Properties

Label 2-5160-1.1-c1-0-60
Degree $2$
Conductor $5160$
Sign $-1$
Analytic cond. $41.2028$
Root an. cond. $6.41894$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s + 3·7-s + 9-s + 5·13-s + 15-s − 4·17-s − 7·19-s − 3·21-s − 4·23-s + 25-s − 27-s + 3·29-s + 3·31-s − 3·35-s − 4·37-s − 5·39-s − 11·41-s + 43-s − 45-s − 2·47-s + 2·49-s + 4·51-s + 10·53-s + 7·57-s − 4·59-s − 11·61-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s + 1.13·7-s + 1/3·9-s + 1.38·13-s + 0.258·15-s − 0.970·17-s − 1.60·19-s − 0.654·21-s − 0.834·23-s + 1/5·25-s − 0.192·27-s + 0.557·29-s + 0.538·31-s − 0.507·35-s − 0.657·37-s − 0.800·39-s − 1.71·41-s + 0.152·43-s − 0.149·45-s − 0.291·47-s + 2/7·49-s + 0.560·51-s + 1.37·53-s + 0.927·57-s − 0.520·59-s − 1.40·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5160\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 43\)
Sign: $-1$
Analytic conductor: \(41.2028\)
Root analytic conductor: \(6.41894\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5160,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
43 \( 1 - T \)
good7 \( 1 - 3 T + p T^{2} \) 1.7.ad
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 5 T + p T^{2} \) 1.13.af
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 - 3 T + p T^{2} \) 1.31.ad
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + 11 T + p T^{2} \) 1.41.l
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 11 T + p T^{2} \) 1.61.l
67 \( 1 - T + p T^{2} \) 1.67.ab
71 \( 1 + 14 T + p T^{2} \) 1.71.o
73 \( 1 + 3 T + p T^{2} \) 1.73.d
79 \( 1 - 13 T + p T^{2} \) 1.79.an
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 + 4 T + p T^{2} \) 1.89.e
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.053554177900616896980213932582, −7.02832308323562366588618337748, −6.39327509507671339378389867715, −5.77422294721419503762185296234, −4.70192405105752995433631572599, −4.36785902876509993676743112370, −3.48705521644292636227371826959, −2.14839264109316259139552249880, −1.36799422266439006368547983451, 0, 1.36799422266439006368547983451, 2.14839264109316259139552249880, 3.48705521644292636227371826959, 4.36785902876509993676743112370, 4.70192405105752995433631572599, 5.77422294721419503762185296234, 6.39327509507671339378389867715, 7.02832308323562366588618337748, 8.053554177900616896980213932582

Graph of the $Z$-function along the critical line