| L(s) = 1 | − 2-s + 3-s + 4-s + 5-s − 6-s − 2·7-s − 8-s + 9-s − 10-s + 12-s + 2·14-s + 15-s + 16-s − 18-s − 2·19-s + 20-s − 2·21-s − 6·23-s − 24-s + 25-s + 27-s − 2·28-s − 30-s + 4·31-s − 32-s − 2·35-s + 36-s + ⋯ |
| L(s) = 1 | − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s − 0.755·7-s − 0.353·8-s + 1/3·9-s − 0.316·10-s + 0.288·12-s + 0.534·14-s + 0.258·15-s + 1/4·16-s − 0.235·18-s − 0.458·19-s + 0.223·20-s − 0.436·21-s − 1.25·23-s − 0.204·24-s + 1/5·25-s + 0.192·27-s − 0.377·28-s − 0.182·30-s + 0.718·31-s − 0.176·32-s − 0.338·35-s + 1/6·36-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5070 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5070 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
|---|
| bad | 2 | \( 1 + T \) | |
| 3 | \( 1 - T \) | |
| 5 | \( 1 - T \) | |
| 13 | \( 1 \) | |
| good | 7 | \( 1 + 2 T + p T^{2} \) | 1.7.c |
| 11 | \( 1 + p T^{2} \) | 1.11.a |
| 17 | \( 1 + p T^{2} \) | 1.17.a |
| 19 | \( 1 + 2 T + p T^{2} \) | 1.19.c |
| 23 | \( 1 + 6 T + p T^{2} \) | 1.23.g |
| 29 | \( 1 + p T^{2} \) | 1.29.a |
| 31 | \( 1 - 4 T + p T^{2} \) | 1.31.ae |
| 37 | \( 1 + 2 T + p T^{2} \) | 1.37.c |
| 41 | \( 1 - 6 T + p T^{2} \) | 1.41.ag |
| 43 | \( 1 + 4 T + p T^{2} \) | 1.43.e |
| 47 | \( 1 + p T^{2} \) | 1.47.a |
| 53 | \( 1 + 6 T + p T^{2} \) | 1.53.g |
| 59 | \( 1 + p T^{2} \) | 1.59.a |
| 61 | \( 1 + 10 T + p T^{2} \) | 1.61.k |
| 67 | \( 1 + 8 T + p T^{2} \) | 1.67.i |
| 71 | \( 1 + p T^{2} \) | 1.71.a |
| 73 | \( 1 + 8 T + p T^{2} \) | 1.73.i |
| 79 | \( 1 - 8 T + p T^{2} \) | 1.79.ai |
| 83 | \( 1 - 12 T + p T^{2} \) | 1.83.am |
| 89 | \( 1 + 6 T + p T^{2} \) | 1.89.g |
| 97 | \( 1 + 8 T + p T^{2} \) | 1.97.i |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.952760203210062516132209351264, −7.32568595028324512656310841088, −6.34654580096949805944908709889, −6.12338006987446057818100476576, −4.92128181899795955283277782197, −3.95657875218712377056150581111, −3.08932294457603738661241658701, −2.33387902535045919916164792034, −1.42592120827963041876799254895, 0,
1.42592120827963041876799254895, 2.33387902535045919916164792034, 3.08932294457603738661241658701, 3.95657875218712377056150581111, 4.92128181899795955283277782197, 6.12338006987446057818100476576, 6.34654580096949805944908709889, 7.32568595028324512656310841088, 7.952760203210062516132209351264