Properties

Label 2-4950-1.1-c1-0-64
Degree $2$
Conductor $4950$
Sign $-1$
Analytic cond. $39.5259$
Root an. cond. $6.28696$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 3·7-s − 8-s − 11-s + 4·13-s − 3·14-s + 16-s − 3·17-s − 5·19-s + 22-s − 4·23-s − 4·26-s + 3·28-s − 5·29-s + 7·31-s − 32-s + 3·34-s − 7·37-s + 5·38-s + 8·41-s − 6·43-s − 44-s + 4·46-s − 8·47-s + 2·49-s + 4·52-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 1.13·7-s − 0.353·8-s − 0.301·11-s + 1.10·13-s − 0.801·14-s + 1/4·16-s − 0.727·17-s − 1.14·19-s + 0.213·22-s − 0.834·23-s − 0.784·26-s + 0.566·28-s − 0.928·29-s + 1.25·31-s − 0.176·32-s + 0.514·34-s − 1.15·37-s + 0.811·38-s + 1.24·41-s − 0.914·43-s − 0.150·44-s + 0.589·46-s − 1.16·47-s + 2/7·49-s + 0.554·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4950 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4950\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(39.5259\)
Root analytic conductor: \(6.28696\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4950,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 + T \)
good7 \( 1 - 3 T + p T^{2} \) 1.7.ad
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 5 T + p T^{2} \) 1.29.f
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 13 T + p T^{2} \) 1.61.n
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 3 T + p T^{2} \) 1.71.ad
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 15 T + p T^{2} \) 1.89.ap
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.120191452422177114432965987488, −7.38155858128562355916640707717, −6.40550294377758213402642700076, −5.97134943250727568183682660114, −4.86461296537077672836657233082, −4.24258949392965466519512212389, −3.19555527256937768583664502196, −2.04894811678546610668362989566, −1.47243511430493457189804457763, 0, 1.47243511430493457189804457763, 2.04894811678546610668362989566, 3.19555527256937768583664502196, 4.24258949392965466519512212389, 4.86461296537077672836657233082, 5.97134943250727568183682660114, 6.40550294377758213402642700076, 7.38155858128562355916640707717, 8.120191452422177114432965987488

Graph of the $Z$-function along the critical line