Properties

Label 2-47432-1.1-c1-0-20
Degree $2$
Conductor $47432$
Sign $-1$
Analytic cond. $378.746$
Root an. cond. $19.4614$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 5-s + 6·9-s + 2·13-s − 3·15-s + 3·17-s + 5·19-s − 3·23-s − 4·25-s − 9·27-s + 6·29-s + 31-s − 5·37-s − 6·39-s − 10·41-s + 4·43-s + 6·45-s − 47-s − 9·51-s − 9·53-s − 15·57-s − 3·59-s + 3·61-s + 2·65-s + 11·67-s + 9·69-s + 16·71-s + ⋯
L(s)  = 1  − 1.73·3-s + 0.447·5-s + 2·9-s + 0.554·13-s − 0.774·15-s + 0.727·17-s + 1.14·19-s − 0.625·23-s − 4/5·25-s − 1.73·27-s + 1.11·29-s + 0.179·31-s − 0.821·37-s − 0.960·39-s − 1.56·41-s + 0.609·43-s + 0.894·45-s − 0.145·47-s − 1.26·51-s − 1.23·53-s − 1.98·57-s − 0.390·59-s + 0.384·61-s + 0.248·65-s + 1.34·67-s + 1.08·69-s + 1.89·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 47432 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 47432 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(47432\)    =    \(2^{3} \cdot 7^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(378.746\)
Root analytic conductor: \(19.4614\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 47432,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
11 \( 1 \)
good3 \( 1 + p T + p T^{2} \) 1.3.d
5 \( 1 - T + p T^{2} \) 1.5.ab
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - T + p T^{2} \) 1.31.ab
37 \( 1 + 5 T + p T^{2} \) 1.37.f
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + T + p T^{2} \) 1.47.b
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 - 3 T + p T^{2} \) 1.61.ad
67 \( 1 - 11 T + p T^{2} \) 1.67.al
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 - 11 T + p T^{2} \) 1.79.al
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.96522844055372, −14.04703009606147, −13.83738356457826, −13.32357995335630, −12.46228573260822, −12.20815893558794, −11.86120467650913, −11.13172636559390, −10.88235115120957, −10.16303813396961, −9.787026252252774, −9.433291940477367, −8.369273567575970, −7.972875805402506, −7.218616389834685, −6.586450866580328, −6.283776394984190, −5.624428851580821, −5.191561177529108, −4.807881107482157, −3.855550985300810, −3.407990012061900, −2.320805705078825, −1.448471791250634, −0.9493308912318411, 0, 0.9493308912318411, 1.448471791250634, 2.320805705078825, 3.407990012061900, 3.855550985300810, 4.807881107482157, 5.191561177529108, 5.624428851580821, 6.283776394984190, 6.586450866580328, 7.218616389834685, 7.972875805402506, 8.369273567575970, 9.433291940477367, 9.787026252252774, 10.16303813396961, 10.88235115120957, 11.13172636559390, 11.86120467650913, 12.20815893558794, 12.46228573260822, 13.32357995335630, 13.83738356457826, 14.04703009606147, 14.96522844055372

Graph of the $Z$-function along the critical line