Properties

Label 2-46546-1.1-c1-0-6
Degree $2$
Conductor $46546$
Sign $-1$
Analytic cond. $371.671$
Root an. cond. $19.2787$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 2·3-s + 4-s − 2·5-s + 2·6-s + 3·7-s + 8-s + 9-s − 2·10-s + 2·11-s + 2·12-s − 3·13-s + 3·14-s − 4·15-s + 16-s + 17-s + 18-s + 4·19-s − 2·20-s + 6·21-s + 2·22-s − 6·23-s + 2·24-s − 25-s − 3·26-s − 4·27-s + 3·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.15·3-s + 1/2·4-s − 0.894·5-s + 0.816·6-s + 1.13·7-s + 0.353·8-s + 1/3·9-s − 0.632·10-s + 0.603·11-s + 0.577·12-s − 0.832·13-s + 0.801·14-s − 1.03·15-s + 1/4·16-s + 0.242·17-s + 0.235·18-s + 0.917·19-s − 0.447·20-s + 1.30·21-s + 0.426·22-s − 1.25·23-s + 0.408·24-s − 1/5·25-s − 0.588·26-s − 0.769·27-s + 0.566·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 46546 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 46546 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(46546\)    =    \(2 \cdot 17 \cdot 37^{2}\)
Sign: $-1$
Analytic conductor: \(371.671\)
Root analytic conductor: \(19.2787\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 46546,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
17 \( 1 - T \)
37 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 - 3 T + p T^{2} \) 1.7.ad
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + 3 T + p T^{2} \) 1.13.d
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 2 T + p T^{2} \) 1.59.c
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 + 15 T + p T^{2} \) 1.67.p
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 + T + p T^{2} \) 1.83.b
89 \( 1 + 8 T + p T^{2} \) 1.89.i
97 \( 1 - 9 T + p T^{2} \) 1.97.aj
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.80983742288978, −14.36569890381168, −13.98913798124616, −13.55547728919348, −12.89484205016595, −12.07274604569228, −11.85442679671454, −11.55933648783900, −10.85890101408767, −10.12799704794212, −9.622949012243465, −8.981638545366686, −8.365719098709705, −7.911842538640733, −7.544048373928704, −7.155228769635615, −6.178208861813675, −5.617253728087524, −4.869002817062078, −4.325298015475808, −3.908704561230405, −3.201029429947336, −2.705546544603491, −1.886357520794618, −1.349757990022892, 0, 1.349757990022892, 1.886357520794618, 2.705546544603491, 3.201029429947336, 3.908704561230405, 4.325298015475808, 4.869002817062078, 5.617253728087524, 6.178208861813675, 7.155228769635615, 7.544048373928704, 7.911842538640733, 8.365719098709705, 8.981638545366686, 9.622949012243465, 10.12799704794212, 10.85890101408767, 11.55933648783900, 11.85442679671454, 12.07274604569228, 12.89484205016595, 13.55547728919348, 13.98913798124616, 14.36569890381168, 14.80983742288978

Graph of the $Z$-function along the critical line