Properties

Label 2-41280-1.1-c1-0-10
Degree $2$
Conductor $41280$
Sign $1$
Analytic cond. $329.622$
Root an. cond. $18.1555$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s − 4·7-s + 9-s + 2·13-s + 15-s + 2·17-s + 4·19-s − 4·21-s + 25-s + 27-s − 2·29-s − 4·35-s − 10·37-s + 2·39-s − 6·41-s − 43-s + 45-s + 8·47-s + 9·49-s + 2·51-s − 2·53-s + 4·57-s − 2·61-s − 4·63-s + 2·65-s − 4·67-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s − 1.51·7-s + 1/3·9-s + 0.554·13-s + 0.258·15-s + 0.485·17-s + 0.917·19-s − 0.872·21-s + 1/5·25-s + 0.192·27-s − 0.371·29-s − 0.676·35-s − 1.64·37-s + 0.320·39-s − 0.937·41-s − 0.152·43-s + 0.149·45-s + 1.16·47-s + 9/7·49-s + 0.280·51-s − 0.274·53-s + 0.529·57-s − 0.256·61-s − 0.503·63-s + 0.248·65-s − 0.488·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 41280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 41280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(41280\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 43\)
Sign: $1$
Analytic conductor: \(329.622\)
Root analytic conductor: \(18.1555\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 41280,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.510568387\)
\(L(\frac12)\) \(\approx\) \(2.510568387\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 - T \)
43 \( 1 + T \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 6 T + p T^{2} \) 1.41.g
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.71096224393060, −14.07954280948729, −13.61872005268135, −13.37200988149634, −12.77318486089200, −12.16047887353588, −11.88899014620355, −10.88677981750141, −10.43042635780376, −9.941056829041787, −9.447010771301151, −9.016848015168065, −8.531426047782179, −7.701943335854391, −7.250070838651722, −6.579166095442009, −6.190181151789531, −5.472233393623442, −4.963938649509396, −3.916124163048776, −3.433301670503265, −3.072927841627668, −2.242289338784338, −1.470560924167544, −0.5585974240581658, 0.5585974240581658, 1.470560924167544, 2.242289338784338, 3.072927841627668, 3.433301670503265, 3.916124163048776, 4.963938649509396, 5.472233393623442, 6.190181151789531, 6.579166095442009, 7.250070838651722, 7.701943335854391, 8.531426047782179, 9.016848015168065, 9.447010771301151, 9.941056829041787, 10.43042635780376, 10.88677981750141, 11.88899014620355, 12.16047887353588, 12.77318486089200, 13.37200988149634, 13.61872005268135, 14.07954280948729, 14.71096224393060

Graph of the $Z$-function along the critical line