Properties

Label 2-4080-1.1-c1-0-46
Degree $2$
Conductor $4080$
Sign $-1$
Analytic cond. $32.5789$
Root an. cond. $5.70779$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s + 3·7-s + 9-s − 5·11-s − 2·13-s + 15-s − 17-s + 5·19-s − 3·21-s + 6·23-s + 25-s − 27-s − 3·29-s − 2·31-s + 5·33-s − 3·35-s − 7·37-s + 2·39-s + 41-s + 4·43-s − 45-s − 3·47-s + 2·49-s + 51-s − 9·53-s + 5·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s + 1.13·7-s + 1/3·9-s − 1.50·11-s − 0.554·13-s + 0.258·15-s − 0.242·17-s + 1.14·19-s − 0.654·21-s + 1.25·23-s + 1/5·25-s − 0.192·27-s − 0.557·29-s − 0.359·31-s + 0.870·33-s − 0.507·35-s − 1.15·37-s + 0.320·39-s + 0.156·41-s + 0.609·43-s − 0.149·45-s − 0.437·47-s + 2/7·49-s + 0.140·51-s − 1.23·53-s + 0.674·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4080\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 17\)
Sign: $-1$
Analytic conductor: \(32.5789\)
Root analytic conductor: \(5.70779\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4080,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
17 \( 1 + T \)
good7 \( 1 - 3 T + p T^{2} \) 1.7.ad
11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 - T + p T^{2} \) 1.41.ab
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 + 9 T + p T^{2} \) 1.73.j
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.82019860053062731851275989476, −7.51746771871297983551565905362, −6.74776346033095858563796970806, −5.47042446491171288475524183444, −5.16631113669803587358946354338, −4.54837901154406062612863330747, −3.39129618438877851688865417591, −2.44340682302722181835961385999, −1.31243317742938213545253608429, 0, 1.31243317742938213545253608429, 2.44340682302722181835961385999, 3.39129618438877851688865417591, 4.54837901154406062612863330747, 5.16631113669803587358946354338, 5.47042446491171288475524183444, 6.74776346033095858563796970806, 7.51746771871297983551565905362, 7.82019860053062731851275989476

Graph of the $Z$-function along the critical line