Properties

Label 2-40656-1.1-c1-0-39
Degree $2$
Conductor $40656$
Sign $1$
Analytic cond. $324.639$
Root an. cond. $18.0177$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 7-s + 9-s + 2·13-s − 2·17-s − 2·19-s + 21-s + 2·23-s − 5·25-s + 27-s + 10·29-s + 4·31-s − 2·37-s + 2·39-s + 2·41-s + 6·43-s + 10·47-s + 49-s − 2·51-s + 12·53-s − 2·57-s − 4·59-s + 2·61-s + 63-s + 12·67-s + 2·69-s − 2·71-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.377·7-s + 1/3·9-s + 0.554·13-s − 0.485·17-s − 0.458·19-s + 0.218·21-s + 0.417·23-s − 25-s + 0.192·27-s + 1.85·29-s + 0.718·31-s − 0.328·37-s + 0.320·39-s + 0.312·41-s + 0.914·43-s + 1.45·47-s + 1/7·49-s − 0.280·51-s + 1.64·53-s − 0.264·57-s − 0.520·59-s + 0.256·61-s + 0.125·63-s + 1.46·67-s + 0.240·69-s − 0.237·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 40656 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40656 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(40656\)    =    \(2^{4} \cdot 3 \cdot 7 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(324.639\)
Root analytic conductor: \(18.0177\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 40656,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.555283325\)
\(L(\frac12)\) \(\approx\) \(3.555283325\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 - T \)
11 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.76061802384735, −14.14517300125695, −13.70226667423496, −13.48228874430092, −12.60008086782542, −12.30308140333365, −11.60576981566191, −11.11332561651850, −10.47077833520412, −10.12302851992739, −9.399132977998816, −8.754669833837237, −8.509980571920273, −7.878462363941057, −7.311342642600960, −6.650442408959472, −6.160859689156908, −5.438651611728778, −4.751722424365520, −4.104105189869509, −3.725166743082867, −2.636240322411504, −2.417847080877761, −1.401615794352109, −0.6996032502216066, 0.6996032502216066, 1.401615794352109, 2.417847080877761, 2.636240322411504, 3.725166743082867, 4.104105189869509, 4.751722424365520, 5.438651611728778, 6.160859689156908, 6.650442408959472, 7.311342642600960, 7.878462363941057, 8.509980571920273, 8.754669833837237, 9.399132977998816, 10.12302851992739, 10.47077833520412, 11.11332561651850, 11.60576981566191, 12.30308140333365, 12.60008086782542, 13.48228874430092, 13.70226667423496, 14.14517300125695, 14.76061802384735

Graph of the $Z$-function along the critical line