Properties

Label 2-40656-1.1-c1-0-37
Degree $2$
Conductor $40656$
Sign $1$
Analytic cond. $324.639$
Root an. cond. $18.0177$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·5-s − 7-s + 9-s − 5·13-s + 2·15-s + 6·17-s + 4·19-s − 21-s − 23-s − 25-s + 27-s + 29-s + 31-s − 2·35-s + 12·37-s − 5·39-s + 9·41-s + 5·43-s + 2·45-s − 10·47-s + 49-s + 6·51-s − 2·53-s + 4·57-s − 13·59-s + 11·61-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.894·5-s − 0.377·7-s + 1/3·9-s − 1.38·13-s + 0.516·15-s + 1.45·17-s + 0.917·19-s − 0.218·21-s − 0.208·23-s − 1/5·25-s + 0.192·27-s + 0.185·29-s + 0.179·31-s − 0.338·35-s + 1.97·37-s − 0.800·39-s + 1.40·41-s + 0.762·43-s + 0.298·45-s − 1.45·47-s + 1/7·49-s + 0.840·51-s − 0.274·53-s + 0.529·57-s − 1.69·59-s + 1.40·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 40656 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40656 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(40656\)    =    \(2^{4} \cdot 3 \cdot 7 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(324.639\)
Root analytic conductor: \(18.0177\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 40656,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.674977243\)
\(L(\frac12)\) \(\approx\) \(3.674977243\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 + T \)
11 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
13 \( 1 + 5 T + p T^{2} \) 1.13.f
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 - T + p T^{2} \) 1.29.ab
31 \( 1 - T + p T^{2} \) 1.31.ab
37 \( 1 - 12 T + p T^{2} \) 1.37.am
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 - 5 T + p T^{2} \) 1.43.af
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 13 T + p T^{2} \) 1.59.n
61 \( 1 - 11 T + p T^{2} \) 1.61.al
67 \( 1 - 7 T + p T^{2} \) 1.67.ah
71 \( 1 - T + p T^{2} \) 1.71.ab
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 11 T + p T^{2} \) 1.83.l
89 \( 1 - 13 T + p T^{2} \) 1.89.an
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.70608023402108, −14.17227695133336, −13.92251859272383, −13.21046894517790, −12.72315659805028, −12.32120851935310, −11.73202521473413, −11.09344626521266, −10.31807791306317, −9.797719737862867, −9.506962310833391, −9.338300192048065, −8.159710925609919, −7.881147648023849, −7.324072754900727, −6.709964987694914, −5.885788647188117, −5.634092726689703, −4.840711558358780, −4.252033554795803, −3.382468391013634, −2.801953248252228, −2.340295978253592, −1.474695117198485, −0.6875047651436160, 0.6875047651436160, 1.474695117198485, 2.340295978253592, 2.801953248252228, 3.382468391013634, 4.252033554795803, 4.840711558358780, 5.634092726689703, 5.885788647188117, 6.709964987694914, 7.324072754900727, 7.881147648023849, 8.159710925609919, 9.338300192048065, 9.506962310833391, 9.797719737862867, 10.31807791306317, 11.09344626521266, 11.73202521473413, 12.32120851935310, 12.72315659805028, 13.21046894517790, 13.92251859272383, 14.17227695133336, 14.70608023402108

Graph of the $Z$-function along the critical line