Properties

Label 2-4056-1.1-c1-0-51
Degree $2$
Conductor $4056$
Sign $1$
Analytic cond. $32.3873$
Root an. cond. $5.69098$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 4·5-s + 4·7-s + 9-s + 2·11-s + 4·15-s − 6·17-s − 4·19-s + 4·21-s + 4·23-s + 11·25-s + 27-s − 6·29-s − 8·31-s + 2·33-s + 16·35-s + 10·37-s + 4·41-s − 4·43-s + 4·45-s + 6·47-s + 9·49-s − 6·51-s + 6·53-s + 8·55-s − 4·57-s + 6·59-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.78·5-s + 1.51·7-s + 1/3·9-s + 0.603·11-s + 1.03·15-s − 1.45·17-s − 0.917·19-s + 0.872·21-s + 0.834·23-s + 11/5·25-s + 0.192·27-s − 1.11·29-s − 1.43·31-s + 0.348·33-s + 2.70·35-s + 1.64·37-s + 0.624·41-s − 0.609·43-s + 0.596·45-s + 0.875·47-s + 9/7·49-s − 0.840·51-s + 0.824·53-s + 1.07·55-s − 0.529·57-s + 0.781·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4056 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4056 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4056\)    =    \(2^{3} \cdot 3 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(32.3873\)
Root analytic conductor: \(5.69098\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4056,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.169715580\)
\(L(\frac12)\) \(\approx\) \(4.169715580\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
13 \( 1 \)
good5 \( 1 - 4 T + p T^{2} \) 1.5.ae
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 10 T + p T^{2} \) 1.83.ak
89 \( 1 + 8 T + p T^{2} \) 1.89.i
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.817407586522778069079144648315, −7.72879474900016567268618051227, −6.96083678200081693746573024083, −6.19828151787800730907119937682, −5.46198202571299738670788333206, −4.70278780739485109887488718416, −3.98300616324174991728330752059, −2.50958892989649883973601711340, −2.03328703404531547851260400557, −1.30627215120689870699242878095, 1.30627215120689870699242878095, 2.03328703404531547851260400557, 2.50958892989649883973601711340, 3.98300616324174991728330752059, 4.70278780739485109887488718416, 5.46198202571299738670788333206, 6.19828151787800730907119937682, 6.96083678200081693746573024083, 7.72879474900016567268618051227, 8.817407586522778069079144648315

Graph of the $Z$-function along the critical line