Properties

Label 2-4050-1.1-c1-0-33
Degree $2$
Conductor $4050$
Sign $1$
Analytic cond. $32.3394$
Root an. cond. $5.68677$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 7-s + 8-s + 6·11-s − 2·13-s + 14-s + 16-s − 3·17-s + 2·19-s + 6·22-s − 2·26-s + 28-s + 8·31-s + 32-s − 3·34-s − 2·37-s + 2·38-s + 3·41-s + 10·43-s + 6·44-s + 3·47-s − 6·49-s − 2·52-s − 12·53-s + 56-s + 6·59-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.377·7-s + 0.353·8-s + 1.80·11-s − 0.554·13-s + 0.267·14-s + 1/4·16-s − 0.727·17-s + 0.458·19-s + 1.27·22-s − 0.392·26-s + 0.188·28-s + 1.43·31-s + 0.176·32-s − 0.514·34-s − 0.328·37-s + 0.324·38-s + 0.468·41-s + 1.52·43-s + 0.904·44-s + 0.437·47-s − 6/7·49-s − 0.277·52-s − 1.64·53-s + 0.133·56-s + 0.781·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4050 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4050 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4050\)    =    \(2 \cdot 3^{4} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(32.3394\)
Root analytic conductor: \(5.68677\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4050,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.622919523\)
\(L(\frac12)\) \(\approx\) \(3.622919523\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 13 T + p T^{2} \) 1.73.an
79 \( 1 + 13 T + p T^{2} \) 1.79.n
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 + 17 T + p T^{2} \) 1.97.r
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.346212246314974574226701398773, −7.61773432256632124956979349889, −6.69485747773736211209483326488, −6.37893985382487209328328175036, −5.37545541415504014341306579918, −4.53274674419110166644396580674, −4.03536650303338836080745036959, −3.05371668490022537971453314603, −2.05687187057551879747467060410, −1.04585618057385714309721390590, 1.04585618057385714309721390590, 2.05687187057551879747467060410, 3.05371668490022537971453314603, 4.03536650303338836080745036959, 4.53274674419110166644396580674, 5.37545541415504014341306579918, 6.37893985382487209328328175036, 6.69485747773736211209483326488, 7.61773432256632124956979349889, 8.346212246314974574226701398773

Graph of the $Z$-function along the critical line