Properties

Label 2-3900-1.1-c1-0-34
Degree $2$
Conductor $3900$
Sign $-1$
Analytic cond. $31.1416$
Root an. cond. $5.58047$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 7-s + 9-s − 3·11-s + 13-s + 3·17-s − 4·19-s − 21-s − 6·23-s + 27-s + 3·29-s − 31-s − 3·33-s + 2·37-s + 39-s − 10·43-s − 3·47-s − 6·49-s + 3·51-s − 3·53-s − 4·57-s + 3·59-s + 5·61-s − 63-s − 7·67-s − 6·69-s + 2·73-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.377·7-s + 1/3·9-s − 0.904·11-s + 0.277·13-s + 0.727·17-s − 0.917·19-s − 0.218·21-s − 1.25·23-s + 0.192·27-s + 0.557·29-s − 0.179·31-s − 0.522·33-s + 0.328·37-s + 0.160·39-s − 1.52·43-s − 0.437·47-s − 6/7·49-s + 0.420·51-s − 0.412·53-s − 0.529·57-s + 0.390·59-s + 0.640·61-s − 0.125·63-s − 0.855·67-s − 0.722·69-s + 0.234·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3900\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(31.1416\)
Root analytic conductor: \(5.58047\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3900,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
13 \( 1 - T \)
good7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 + 3 T + p T^{2} \) 1.11.d
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 + T + p T^{2} \) 1.31.b
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 + 7 T + p T^{2} \) 1.67.h
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 15 T + p T^{2} \) 1.83.p
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.221754042339034046515342071823, −7.52218298191206417199272461589, −6.63284285758713129469637358413, −5.95185215446340372734922504507, −5.06534986105564674565109366634, −4.17834025726867744408375121313, −3.34857687543109834152590964475, −2.56960853142190099040371679998, −1.58207013902956100563716211390, 0, 1.58207013902956100563716211390, 2.56960853142190099040371679998, 3.34857687543109834152590964475, 4.17834025726867744408375121313, 5.06534986105564674565109366634, 5.95185215446340372734922504507, 6.63284285758713129469637358413, 7.52218298191206417199272461589, 8.221754042339034046515342071823

Graph of the $Z$-function along the critical line