Properties

Label 3900.l
Number of curves $2$
Conductor $3900$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("l1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 3900.l have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 3 T + 29 T^{2}\) 1.29.ad
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 3900.l do not have complex multiplication.

Modular form 3900.2.a.l

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - q^{7} + q^{9} - 3 q^{11} + q^{13} + 3 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 3900.l

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3900.l1 3900m1 \([0, 1, 0, -40708, 16727588]\) \(-74605986640/1167575877\) \(-116757587700000000\) \([3]\) \(25920\) \(1.9562\) \(\Gamma_0(N)\)-optimal
3900.l2 3900m2 \([0, 1, 0, 364292, -437682412]\) \(53465227872560/858964449213\) \(-85896444921300000000\) \([]\) \(77760\) \(2.5055\)