Properties

Label 2-385728-1.1-c1-0-121
Degree $2$
Conductor $385728$
Sign $1$
Analytic cond. $3080.05$
Root an. cond. $55.4982$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s + 9-s + 2·11-s + 13-s + 15-s + 8·19-s − 3·23-s − 4·25-s + 27-s + 29-s + 8·31-s + 2·33-s + 9·37-s + 39-s − 41-s + 4·43-s + 45-s + 7·47-s + 53-s + 2·55-s + 8·57-s + 2·59-s + 8·61-s + 65-s − 5·67-s − 3·69-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s + 1/3·9-s + 0.603·11-s + 0.277·13-s + 0.258·15-s + 1.83·19-s − 0.625·23-s − 4/5·25-s + 0.192·27-s + 0.185·29-s + 1.43·31-s + 0.348·33-s + 1.47·37-s + 0.160·39-s − 0.156·41-s + 0.609·43-s + 0.149·45-s + 1.02·47-s + 0.137·53-s + 0.269·55-s + 1.05·57-s + 0.260·59-s + 1.02·61-s + 0.124·65-s − 0.610·67-s − 0.361·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 385728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 385728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(385728\)    =    \(2^{6} \cdot 3 \cdot 7^{2} \cdot 41\)
Sign: $1$
Analytic conductor: \(3080.05\)
Root analytic conductor: \(55.4982\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 385728,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(6.065771307\)
\(L(\frac12)\) \(\approx\) \(6.065771307\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 \)
41 \( 1 + T \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 - T + p T^{2} \) 1.29.ab
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 9 T + p T^{2} \) 1.37.aj
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 7 T + p T^{2} \) 1.47.ah
53 \( 1 - T + p T^{2} \) 1.53.ab
59 \( 1 - 2 T + p T^{2} \) 1.59.ac
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 11 T + p T^{2} \) 1.79.al
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 - 13 T + p T^{2} \) 1.97.an
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.23888025416623, −12.12861049419530, −11.63725081814620, −11.14394171929723, −10.63911730536175, −9.942280833697636, −9.753378829261177, −9.410583314675099, −8.915414055770807, −8.286814599261898, −7.972163600453575, −7.491903688907762, −7.004022021546295, −6.412340664659668, −6.031303004201117, −5.500010815486491, −5.051784884800354, −4.235050323196969, −4.048988919941101, −3.379387397775768, −2.818322393550035, −2.385273321975932, −1.735405031758056, −1.063946879702164, −0.6895361835882663, 0.6895361835882663, 1.063946879702164, 1.735405031758056, 2.385273321975932, 2.818322393550035, 3.379387397775768, 4.048988919941101, 4.235050323196969, 5.051784884800354, 5.500010815486491, 6.031303004201117, 6.412340664659668, 7.004022021546295, 7.491903688907762, 7.972163600453575, 8.286814599261898, 8.915414055770807, 9.410583314675099, 9.753378829261177, 9.942280833697636, 10.63911730536175, 11.14394171929723, 11.63725081814620, 12.12861049419530, 12.23888025416623

Graph of the $Z$-function along the critical line