Properties

Label 2-385728-1.1-c1-0-101
Degree $2$
Conductor $385728$
Sign $-1$
Analytic cond. $3080.05$
Root an. cond. $55.4982$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 9-s − 5·11-s + 2·13-s − 8·17-s − 19-s + 23-s − 5·25-s + 27-s + 6·29-s − 11·31-s − 5·33-s + 4·37-s + 2·39-s + 41-s + 9·43-s + 47-s − 8·51-s − 10·53-s − 57-s − 3·59-s + 3·61-s − 8·67-s + 69-s + 10·71-s + 4·73-s − 5·75-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/3·9-s − 1.50·11-s + 0.554·13-s − 1.94·17-s − 0.229·19-s + 0.208·23-s − 25-s + 0.192·27-s + 1.11·29-s − 1.97·31-s − 0.870·33-s + 0.657·37-s + 0.320·39-s + 0.156·41-s + 1.37·43-s + 0.145·47-s − 1.12·51-s − 1.37·53-s − 0.132·57-s − 0.390·59-s + 0.384·61-s − 0.977·67-s + 0.120·69-s + 1.18·71-s + 0.468·73-s − 0.577·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 385728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 385728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(385728\)    =    \(2^{6} \cdot 3 \cdot 7^{2} \cdot 41\)
Sign: $-1$
Analytic conductor: \(3080.05\)
Root analytic conductor: \(55.4982\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 385728,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 \)
41 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 8 T + p T^{2} \) 1.17.i
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 11 T + p T^{2} \) 1.31.l
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
43 \( 1 - 9 T + p T^{2} \) 1.43.aj
47 \( 1 - T + p T^{2} \) 1.47.ab
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 - 3 T + p T^{2} \) 1.61.ad
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 9 T + p T^{2} \) 1.79.j
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.82072035714384, −12.49456128901689, −11.69063184842769, −11.17407873575134, −10.83237730702414, −10.64195930919132, −9.871615422759795, −9.548176198878909, −8.944873709546731, −8.662462385424882, −8.142070784020530, −7.734231134201146, −7.239157877556067, −6.834786871678594, −6.137247421764516, −5.811632826790529, −5.223203756114325, −4.528536339533197, −4.334149410557163, −3.681426560051352, −3.027450346756683, −2.592593136603160, −2.070517080930411, −1.640606225240246, −0.6320649687659124, 0, 0.6320649687659124, 1.640606225240246, 2.070517080930411, 2.592593136603160, 3.027450346756683, 3.681426560051352, 4.334149410557163, 4.528536339533197, 5.223203756114325, 5.811632826790529, 6.137247421764516, 6.834786871678594, 7.239157877556067, 7.734231134201146, 8.142070784020530, 8.662462385424882, 8.944873709546731, 9.548176198878909, 9.871615422759795, 10.64195930919132, 10.83237730702414, 11.17407873575134, 11.69063184842769, 12.49456128901689, 12.82072035714384

Graph of the $Z$-function along the critical line