Properties

Label 2-383792-1.1-c1-0-9
Degree $2$
Conductor $383792$
Sign $-1$
Analytic cond. $3064.59$
Root an. cond. $55.3587$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 2·7-s + 9-s − 2·11-s + 2·13-s − 4·19-s + 4·21-s + 2·23-s − 5·25-s + 4·27-s − 6·29-s + 2·31-s + 4·33-s − 6·37-s − 4·39-s + 6·41-s − 4·43-s − 8·47-s − 3·49-s − 6·53-s + 8·57-s − 4·59-s + 2·61-s − 2·63-s + 12·67-s − 4·69-s + 12·71-s + ⋯
L(s)  = 1  − 1.15·3-s − 0.755·7-s + 1/3·9-s − 0.603·11-s + 0.554·13-s − 0.917·19-s + 0.872·21-s + 0.417·23-s − 25-s + 0.769·27-s − 1.11·29-s + 0.359·31-s + 0.696·33-s − 0.986·37-s − 0.640·39-s + 0.937·41-s − 0.609·43-s − 1.16·47-s − 3/7·49-s − 0.824·53-s + 1.05·57-s − 0.520·59-s + 0.256·61-s − 0.251·63-s + 1.46·67-s − 0.481·69-s + 1.42·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 383792 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 383792 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(383792\)    =    \(2^{4} \cdot 17^{2} \cdot 83\)
Sign: $-1$
Analytic conductor: \(3064.59\)
Root analytic conductor: \(55.3587\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 383792,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
17 \( 1 \)
83 \( 1 - T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 16 T + p T^{2} \) 1.73.aq
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.66627589949638, −12.35012640354506, −11.67510687138437, −11.28049965918154, −10.92383352416487, −10.66325627600551, −9.942345338268593, −9.699050362050347, −9.189232194378617, −8.555906817819939, −8.077247541886910, −7.754281123047530, −6.903953067103787, −6.595579994768081, −6.296114954482879, −5.716294669611592, −5.304778891830409, −4.916780647928017, −4.271029479173344, −3.626955392504609, −3.329106273216719, −2.524212666635435, −2.003086029922655, −1.292863021375565, −0.4796905449311351, 0, 0.4796905449311351, 1.292863021375565, 2.003086029922655, 2.524212666635435, 3.329106273216719, 3.626955392504609, 4.271029479173344, 4.916780647928017, 5.304778891830409, 5.716294669611592, 6.296114954482879, 6.595579994768081, 6.903953067103787, 7.754281123047530, 8.077247541886910, 8.555906817819939, 9.189232194378617, 9.699050362050347, 9.942345338268593, 10.66325627600551, 10.92383352416487, 11.28049965918154, 11.67510687138437, 12.35012640354506, 12.66627589949638

Graph of the $Z$-function along the critical line