Properties

Label 2-382800-1.1-c1-0-121
Degree $2$
Conductor $382800$
Sign $-1$
Analytic cond. $3056.67$
Root an. cond. $55.2871$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 7-s + 9-s − 11-s + 2·13-s − 3·17-s + 19-s − 21-s − 3·23-s − 27-s − 29-s − 2·31-s + 33-s + 11·37-s − 2·39-s + 3·41-s + 4·43-s − 3·47-s − 6·49-s + 3·51-s − 57-s + 9·59-s − 10·61-s + 63-s + 4·67-s + 3·69-s − 3·71-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.377·7-s + 1/3·9-s − 0.301·11-s + 0.554·13-s − 0.727·17-s + 0.229·19-s − 0.218·21-s − 0.625·23-s − 0.192·27-s − 0.185·29-s − 0.359·31-s + 0.174·33-s + 1.80·37-s − 0.320·39-s + 0.468·41-s + 0.609·43-s − 0.437·47-s − 6/7·49-s + 0.420·51-s − 0.132·57-s + 1.17·59-s − 1.28·61-s + 0.125·63-s + 0.488·67-s + 0.361·69-s − 0.356·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 382800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 382800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(382800\)    =    \(2^{4} \cdot 3 \cdot 5^{2} \cdot 11 \cdot 29\)
Sign: $-1$
Analytic conductor: \(3056.67\)
Root analytic conductor: \(55.2871\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 382800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
11 \( 1 + T \)
29 \( 1 + T \)
good7 \( 1 - T + p T^{2} \) 1.7.ab
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 + 3 T + p T^{2} \) 1.23.d
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 11 T + p T^{2} \) 1.37.al
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 - 9 T + p T^{2} \) 1.59.aj
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 3 T + p T^{2} \) 1.71.d
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 7 T + p T^{2} \) 1.79.ah
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 19 T + p T^{2} \) 1.97.t
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.67682104355231, −12.26390178867056, −11.65762388948963, −11.24348902370097, −11.07592050545880, −10.56504588260064, −9.942599864407118, −9.670682723917026, −9.032602641975369, −8.666845766831143, −8.028997160856477, −7.672346911086315, −7.286905385422039, −6.503907017936520, −6.274883972894283, −5.755479712863835, −5.299794308475529, −4.573865466914236, −4.466939996442221, −3.703366422718779, −3.263971158990372, −2.396890744541565, −2.091260199976363, −1.300042150232122, −0.7538413249465060, 0, 0.7538413249465060, 1.300042150232122, 2.091260199976363, 2.396890744541565, 3.263971158990372, 3.703366422718779, 4.466939996442221, 4.573865466914236, 5.299794308475529, 5.755479712863835, 6.274883972894283, 6.503907017936520, 7.286905385422039, 7.672346911086315, 8.028997160856477, 8.666845766831143, 9.032602641975369, 9.670682723917026, 9.942599864407118, 10.56504588260064, 11.07592050545880, 11.24348902370097, 11.65762388948963, 12.26390178867056, 12.67682104355231

Graph of the $Z$-function along the critical line