L(s) = 1 | − 3-s − 7-s + 9-s − 11-s − 4·13-s + 5·17-s + 19-s + 21-s − 5·23-s − 27-s − 3·29-s + 6·31-s + 33-s − 12·37-s + 4·39-s − 2·41-s − 13·43-s − 6·47-s + 49-s − 5·51-s + 53-s − 57-s − 11·59-s − 5·61-s − 63-s + 10·67-s + 5·69-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 0.377·7-s + 1/3·9-s − 0.301·11-s − 1.10·13-s + 1.21·17-s + 0.229·19-s + 0.218·21-s − 1.04·23-s − 0.192·27-s − 0.557·29-s + 1.07·31-s + 0.174·33-s − 1.97·37-s + 0.640·39-s − 0.312·41-s − 1.98·43-s − 0.875·47-s + 1/7·49-s − 0.700·51-s + 0.137·53-s − 0.132·57-s − 1.43·59-s − 0.640·61-s − 0.125·63-s + 1.22·67-s + 0.601·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 369600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 369600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.4467508745\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4467508745\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + T \) |
| 11 | \( 1 + T \) |
good | 13 | \( 1 + 4 T + p T^{2} \) |
| 17 | \( 1 - 5 T + p T^{2} \) |
| 19 | \( 1 - T + p T^{2} \) |
| 23 | \( 1 + 5 T + p T^{2} \) |
| 29 | \( 1 + 3 T + p T^{2} \) |
| 31 | \( 1 - 6 T + p T^{2} \) |
| 37 | \( 1 + 12 T + p T^{2} \) |
| 41 | \( 1 + 2 T + p T^{2} \) |
| 43 | \( 1 + 13 T + p T^{2} \) |
| 47 | \( 1 + 6 T + p T^{2} \) |
| 53 | \( 1 - T + p T^{2} \) |
| 59 | \( 1 + 11 T + p T^{2} \) |
| 61 | \( 1 + 5 T + p T^{2} \) |
| 67 | \( 1 - 10 T + p T^{2} \) |
| 71 | \( 1 - 6 T + p T^{2} \) |
| 73 | \( 1 - 4 T + p T^{2} \) |
| 79 | \( 1 - 8 T + p T^{2} \) |
| 83 | \( 1 + 5 T + p T^{2} \) |
| 89 | \( 1 - 13 T + p T^{2} \) |
| 97 | \( 1 - 19 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.40241484359836, −11.96676451769686, −11.82508980620953, −11.24245312071343, −10.42672290681868, −10.32427909895336, −9.903682559241059, −9.471523351128231, −8.978116773780527, −8.154543622532400, −7.979623456835395, −7.476592310360350, −6.840111392159022, −6.557067216266242, −6.003563465579454, −5.381545808286375, −5.067744165624909, −4.708382924666463, −3.913519209699984, −3.341380734493395, −3.090265368592852, −2.139348424776582, −1.804705134467615, −1.007052634377693, −0.1960817715158567,
0.1960817715158567, 1.007052634377693, 1.804705134467615, 2.139348424776582, 3.090265368592852, 3.341380734493395, 3.913519209699984, 4.708382924666463, 5.067744165624909, 5.381545808286375, 6.003563465579454, 6.557067216266242, 6.840111392159022, 7.476592310360350, 7.979623456835395, 8.154543622532400, 8.978116773780527, 9.471523351128231, 9.903682559241059, 10.32427909895336, 10.42672290681868, 11.24245312071343, 11.82508980620953, 11.96676451769686, 12.40241484359836