Properties

Label 2-3648-1.1-c1-0-48
Degree $2$
Conductor $3648$
Sign $1$
Analytic cond. $29.1294$
Root an. cond. $5.39716$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 3·5-s + 7-s + 9-s + 5·11-s + 6·13-s + 3·15-s − 5·17-s − 19-s + 21-s + 4·23-s + 4·25-s + 27-s − 6·29-s + 6·31-s + 5·33-s + 3·35-s + 8·37-s + 6·39-s − 8·41-s − 9·43-s + 3·45-s + 47-s − 6·49-s − 5·51-s − 2·53-s + 15·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.34·5-s + 0.377·7-s + 1/3·9-s + 1.50·11-s + 1.66·13-s + 0.774·15-s − 1.21·17-s − 0.229·19-s + 0.218·21-s + 0.834·23-s + 4/5·25-s + 0.192·27-s − 1.11·29-s + 1.07·31-s + 0.870·33-s + 0.507·35-s + 1.31·37-s + 0.960·39-s − 1.24·41-s − 1.37·43-s + 0.447·45-s + 0.145·47-s − 6/7·49-s − 0.700·51-s − 0.274·53-s + 2.02·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3648 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3648 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3648\)    =    \(2^{6} \cdot 3 \cdot 19\)
Sign: $1$
Analytic conductor: \(29.1294\)
Root analytic conductor: \(5.39716\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3648,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.811452923\)
\(L(\frac12)\) \(\approx\) \(3.811452923\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
19 \( 1 + T \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 - 5 T + p T^{2} \) 1.11.af
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + 5 T + p T^{2} \) 1.17.f
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 + 9 T + p T^{2} \) 1.43.j
47 \( 1 - T + p T^{2} \) 1.47.ab
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 + 11 T + p T^{2} \) 1.61.l
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.791997865595783924823926678815, −8.009694737499873447589050746513, −6.70133446939976904656819214588, −6.49749160169048802133545940441, −5.69112412235536456725087217091, −4.63178168759724390480509005391, −3.89058231761553340258241026684, −2.94072738324304931925847753623, −1.79010635851573294160738022151, −1.33686447944871733441234003392, 1.33686447944871733441234003392, 1.79010635851573294160738022151, 2.94072738324304931925847753623, 3.89058231761553340258241026684, 4.63178168759724390480509005391, 5.69112412235536456725087217091, 6.49749160169048802133545940441, 6.70133446939976904656819214588, 8.009694737499873447589050746513, 8.791997865595783924823926678815

Graph of the $Z$-function along the critical line