Properties

Label 2-361998-1.1-c1-0-45
Degree $2$
Conductor $361998$
Sign $1$
Analytic cond. $2890.56$
Root an. cond. $53.7640$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 3·5-s − 7-s + 8-s + 3·10-s − 14-s + 16-s + 17-s − 2·19-s + 3·20-s − 6·23-s + 4·25-s − 28-s + 3·29-s + 4·31-s + 32-s + 34-s − 3·35-s − 2·37-s − 2·38-s + 3·40-s + 8·43-s − 6·46-s + 9·47-s + 49-s + 4·50-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 1.34·5-s − 0.377·7-s + 0.353·8-s + 0.948·10-s − 0.267·14-s + 1/4·16-s + 0.242·17-s − 0.458·19-s + 0.670·20-s − 1.25·23-s + 4/5·25-s − 0.188·28-s + 0.557·29-s + 0.718·31-s + 0.176·32-s + 0.171·34-s − 0.507·35-s − 0.328·37-s − 0.324·38-s + 0.474·40-s + 1.21·43-s − 0.884·46-s + 1.31·47-s + 1/7·49-s + 0.565·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 361998 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 361998 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(361998\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 13^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(2890.56\)
Root analytic conductor: \(53.7640\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 361998,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(6.367259133\)
\(L(\frac12)\) \(\approx\) \(6.367259133\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 + T \)
13 \( 1 \)
17 \( 1 - T \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
11 \( 1 + p T^{2} \) 1.11.a
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 - 15 T + p T^{2} \) 1.71.ap
73 \( 1 - 16 T + p T^{2} \) 1.73.aq
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.51719830863342, −12.14223442608984, −11.90360515137829, −11.02254470315923, −10.72426128995315, −10.28725607614561, −9.821889280699328, −9.497159157075899, −8.965485993112536, −8.397082491083645, −7.914959973244781, −7.339030803263214, −6.803124534264776, −6.247091698750024, −6.063944386668934, −5.604510368193926, −5.039234276626044, −4.590828560764666, −3.865224550442342, −3.614298130431077, −2.664513991698848, −2.438333440203045, −1.943563466994187, −1.223099409315580, −0.5681160269487920, 0.5681160269487920, 1.223099409315580, 1.943563466994187, 2.438333440203045, 2.664513991698848, 3.614298130431077, 3.865224550442342, 4.590828560764666, 5.039234276626044, 5.604510368193926, 6.063944386668934, 6.247091698750024, 6.803124534264776, 7.339030803263214, 7.914959973244781, 8.397082491083645, 8.965485993112536, 9.497159157075899, 9.821889280699328, 10.28725607614561, 10.72426128995315, 11.02254470315923, 11.90360515137829, 12.14223442608984, 12.51719830863342

Graph of the $Z$-function along the critical line