Properties

Label 2-361998-1.1-c1-0-22
Degree $2$
Conductor $361998$
Sign $1$
Analytic cond. $2890.56$
Root an. cond. $53.7640$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 5-s − 7-s + 8-s − 10-s + 5·11-s − 14-s + 16-s + 17-s − 4·19-s − 20-s + 5·22-s + 23-s − 4·25-s − 28-s + 7·29-s + 10·31-s + 32-s + 34-s + 35-s − 8·37-s − 4·38-s − 40-s − 2·41-s + 43-s + 5·44-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.447·5-s − 0.377·7-s + 0.353·8-s − 0.316·10-s + 1.50·11-s − 0.267·14-s + 1/4·16-s + 0.242·17-s − 0.917·19-s − 0.223·20-s + 1.06·22-s + 0.208·23-s − 4/5·25-s − 0.188·28-s + 1.29·29-s + 1.79·31-s + 0.176·32-s + 0.171·34-s + 0.169·35-s − 1.31·37-s − 0.648·38-s − 0.158·40-s − 0.312·41-s + 0.152·43-s + 0.753·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 361998 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 361998 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(361998\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 13^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(2890.56\)
Root analytic conductor: \(53.7640\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 361998,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.594258907\)
\(L(\frac12)\) \(\approx\) \(3.594258907\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 + T \)
13 \( 1 \)
17 \( 1 - T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
11 \( 1 - 5 T + p T^{2} \) 1.11.af
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 - 7 T + p T^{2} \) 1.29.ah
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 7 T + p T^{2} \) 1.67.h
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 16 T + p T^{2} \) 1.73.q
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.24736538264089, −12.11670719348205, −11.76109128032280, −11.46565855356784, −10.65712306766202, −10.30534964720365, −9.978669452329834, −9.316193804371189, −8.755944431675785, −8.496166267090298, −7.902979500523655, −7.349209044868486, −6.772227997297140, −6.480111734578230, −6.139559484834872, −5.544605490529782, −4.827461354952180, −4.401852882760231, −4.087624393948566, −3.435302553691321, −3.092342390570591, −2.444400475122480, −1.703388741330781, −1.230420591206439, −0.4392568971511110, 0.4392568971511110, 1.230420591206439, 1.703388741330781, 2.444400475122480, 3.092342390570591, 3.435302553691321, 4.087624393948566, 4.401852882760231, 4.827461354952180, 5.544605490529782, 6.139559484834872, 6.480111734578230, 6.772227997297140, 7.349209044868486, 7.902979500523655, 8.496166267090298, 8.755944431675785, 9.316193804371189, 9.978669452329834, 10.30534964720365, 10.65712306766202, 11.46565855356784, 11.76109128032280, 12.11670719348205, 12.24736538264089

Graph of the $Z$-function along the critical line