Properties

Label 2-361998-1.1-c1-0-12
Degree $2$
Conductor $361998$
Sign $1$
Analytic cond. $2890.56$
Root an. cond. $53.7640$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 4·5-s − 7-s + 8-s − 4·10-s + 2·11-s − 14-s + 16-s + 17-s − 5·19-s − 4·20-s + 2·22-s + 6·23-s + 11·25-s − 28-s + 6·29-s − 31-s + 32-s + 34-s + 4·35-s − 4·37-s − 5·38-s − 4·40-s + 9·41-s − 5·43-s + 2·44-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 1.78·5-s − 0.377·7-s + 0.353·8-s − 1.26·10-s + 0.603·11-s − 0.267·14-s + 1/4·16-s + 0.242·17-s − 1.14·19-s − 0.894·20-s + 0.426·22-s + 1.25·23-s + 11/5·25-s − 0.188·28-s + 1.11·29-s − 0.179·31-s + 0.176·32-s + 0.171·34-s + 0.676·35-s − 0.657·37-s − 0.811·38-s − 0.632·40-s + 1.40·41-s − 0.762·43-s + 0.301·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 361998 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 361998 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(361998\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 13^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(2890.56\)
Root analytic conductor: \(53.7640\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 361998,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.646213914\)
\(L(\frac12)\) \(\approx\) \(1.646213914\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 + T \)
13 \( 1 \)
17 \( 1 - T \)
good5 \( 1 + 4 T + p T^{2} \) 1.5.e
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + T + p T^{2} \) 1.31.b
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 + 5 T + p T^{2} \) 1.47.f
53 \( 1 + 7 T + p T^{2} \) 1.53.h
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 9 T + p T^{2} \) 1.71.j
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 5 T + p T^{2} \) 1.79.f
83 \( 1 + 2 T + p T^{2} \) 1.83.c
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.48785271151748, −12.08285939386178, −11.66416693249951, −11.34139251753498, −10.83444803655693, −10.46827085547994, −9.948517602130623, −9.153245862361781, −8.818046176853966, −8.344027328071730, −7.915763791497949, −7.284990332762818, −7.054971476128485, −6.491722724986176, −6.148065533383588, −5.395131380362569, −4.740345147218865, −4.501058424409611, −3.970277053122510, −3.558902835553664, −2.953593457628846, −2.720791591076920, −1.670475407410131, −1.086539019281341, −0.3212527876328935, 0.3212527876328935, 1.086539019281341, 1.670475407410131, 2.720791591076920, 2.953593457628846, 3.558902835553664, 3.970277053122510, 4.501058424409611, 4.740345147218865, 5.395131380362569, 6.148065533383588, 6.491722724986176, 7.054971476128485, 7.284990332762818, 7.915763791497949, 8.344027328071730, 8.818046176853966, 9.153245862361781, 9.948517602130623, 10.46827085547994, 10.83444803655693, 11.34139251753498, 11.66416693249951, 12.08285939386178, 12.48785271151748

Graph of the $Z$-function along the critical line