Properties

Label 2-361998-1.1-c1-0-101
Degree $2$
Conductor $361998$
Sign $1$
Analytic cond. $2890.56$
Root an. cond. $53.7640$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 4·5-s − 7-s + 8-s − 4·10-s − 6·11-s − 14-s + 16-s + 17-s − 4·20-s − 6·22-s + 4·23-s + 11·25-s − 28-s − 8·29-s + 32-s + 34-s + 4·35-s − 4·37-s − 4·40-s − 2·41-s − 8·43-s − 6·44-s + 4·46-s − 8·47-s + 49-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 1.78·5-s − 0.377·7-s + 0.353·8-s − 1.26·10-s − 1.80·11-s − 0.267·14-s + 1/4·16-s + 0.242·17-s − 0.894·20-s − 1.27·22-s + 0.834·23-s + 11/5·25-s − 0.188·28-s − 1.48·29-s + 0.176·32-s + 0.171·34-s + 0.676·35-s − 0.657·37-s − 0.632·40-s − 0.312·41-s − 1.21·43-s − 0.904·44-s + 0.589·46-s − 1.16·47-s + 1/7·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 361998 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 361998 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(361998\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 13^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(2890.56\)
Root analytic conductor: \(53.7640\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 361998,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 + T \)
13 \( 1 \)
17 \( 1 - T \)
good5 \( 1 + 4 T + p T^{2} \) 1.5.e
11 \( 1 + 6 T + p T^{2} \) 1.11.g
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 - 16 T + p T^{2} \) 1.67.aq
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.85480902830576, −12.62902967098831, −12.09478084122058, −11.66693766844253, −11.14179724451683, −10.98244732313886, −10.36412396242332, −10.01541700025167, −9.325702638624573, −8.665110850522089, −8.290420868241052, −7.822548344730858, −7.448809815559810, −7.090927445751235, −6.604202570451931, −5.900501264878698, −5.301674253020800, −4.954812902577582, −4.608691214210252, −3.776746526080558, −3.543973862087281, −3.070517624496225, −2.581246511097683, −1.861336569078939, −1.001697977196357, 0, 0, 1.001697977196357, 1.861336569078939, 2.581246511097683, 3.070517624496225, 3.543973862087281, 3.776746526080558, 4.608691214210252, 4.954812902577582, 5.301674253020800, 5.900501264878698, 6.604202570451931, 7.090927445751235, 7.448809815559810, 7.822548344730858, 8.290420868241052, 8.665110850522089, 9.325702638624573, 10.01541700025167, 10.36412396242332, 10.98244732313886, 11.14179724451683, 11.66693766844253, 12.09478084122058, 12.62902967098831, 12.85480902830576

Graph of the $Z$-function along the critical line