Properties

Label 2-360e2-1.1-c1-0-138
Degree $2$
Conductor $129600$
Sign $-1$
Analytic cond. $1034.86$
Root an. cond. $32.1692$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·7-s − 11-s + 2·17-s − 3·19-s + 4·23-s − 3·29-s − 31-s + 10·37-s − 41-s − 10·43-s − 10·47-s − 3·49-s + 6·53-s + 13·59-s + 10·61-s − 8·67-s + 9·71-s + 14·73-s + 2·77-s − 10·83-s − 13·89-s + 10·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  − 0.755·7-s − 0.301·11-s + 0.485·17-s − 0.688·19-s + 0.834·23-s − 0.557·29-s − 0.179·31-s + 1.64·37-s − 0.156·41-s − 1.52·43-s − 1.45·47-s − 3/7·49-s + 0.824·53-s + 1.69·59-s + 1.28·61-s − 0.977·67-s + 1.06·71-s + 1.63·73-s + 0.227·77-s − 1.09·83-s − 1.37·89-s + 1.01·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 129600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 129600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(129600\)    =    \(2^{6} \cdot 3^{4} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(1034.86\)
Root analytic conductor: \(32.1692\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 129600,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + T + p T^{2} \) 1.11.b
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 3 T + p T^{2} \) 1.19.d
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + T + p T^{2} \) 1.31.b
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + T + p T^{2} \) 1.41.b
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 13 T + p T^{2} \) 1.59.an
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 9 T + p T^{2} \) 1.71.aj
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 10 T + p T^{2} \) 1.83.k
89 \( 1 + 13 T + p T^{2} \) 1.89.n
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.53250573449615, −13.18208382273263, −12.79952488174163, −12.51844191133154, −11.66477205527368, −11.34914187843178, −10.94965432162196, −10.13027130220199, −9.899643143991858, −9.532478463867708, −8.757200977999740, −8.410079680425194, −7.886827951897316, −7.215668368214269, −6.817800791788779, −6.273299140083970, −5.817371103974958, −5.058425565387347, −4.827478629950922, −3.784063045346867, −3.647549666170172, −2.813211525693050, −2.371774085580957, −1.563049148453538, −0.7751223755062531, 0, 0.7751223755062531, 1.563049148453538, 2.371774085580957, 2.813211525693050, 3.647549666170172, 3.784063045346867, 4.827478629950922, 5.058425565387347, 5.817371103974958, 6.273299140083970, 6.817800791788779, 7.215668368214269, 7.886827951897316, 8.410079680425194, 8.757200977999740, 9.532478463867708, 9.899643143991858, 10.13027130220199, 10.94965432162196, 11.34914187843178, 11.66477205527368, 12.51844191133154, 12.79952488174163, 13.18208382273263, 13.53250573449615

Graph of the $Z$-function along the critical line