Properties

Label 2-360e2-1.1-c1-0-131
Degree $2$
Conductor $129600$
Sign $-1$
Analytic cond. $1034.86$
Root an. cond. $32.1692$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s − 5·11-s + 4·13-s − 6·17-s − 7·19-s − 4·23-s + 5·29-s + 3·31-s − 2·37-s + 7·41-s − 6·43-s + 6·47-s − 3·49-s + 10·53-s − 15·59-s − 14·61-s + 4·67-s + 5·71-s − 14·73-s − 10·77-s + 8·79-s + 14·83-s + 3·89-s + 8·91-s + 2·97-s + 101-s + 103-s + ⋯
L(s)  = 1  + 0.755·7-s − 1.50·11-s + 1.10·13-s − 1.45·17-s − 1.60·19-s − 0.834·23-s + 0.928·29-s + 0.538·31-s − 0.328·37-s + 1.09·41-s − 0.914·43-s + 0.875·47-s − 3/7·49-s + 1.37·53-s − 1.95·59-s − 1.79·61-s + 0.488·67-s + 0.593·71-s − 1.63·73-s − 1.13·77-s + 0.900·79-s + 1.53·83-s + 0.317·89-s + 0.838·91-s + 0.203·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 129600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 129600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(129600\)    =    \(2^{6} \cdot 3^{4} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(1034.86\)
Root analytic conductor: \(32.1692\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 129600,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 5 T + p T^{2} \) 1.29.af
31 \( 1 - 3 T + p T^{2} \) 1.31.ad
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 7 T + p T^{2} \) 1.41.ah
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + 15 T + p T^{2} \) 1.59.p
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 5 T + p T^{2} \) 1.71.af
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.74244449503144, −13.20263552450193, −12.94766962525565, −12.24229730870824, −11.86607430725351, −11.08786207178903, −10.84655002473034, −10.50387106125530, −10.07247585016579, −9.187247729924644, −8.662313198585261, −8.470377634647546, −7.850209919893827, −7.513945014225045, −6.672434129333824, −6.173066757229306, −5.924225316257671, −5.016498524343317, −4.590459198245138, −4.275756555028535, −3.479309431914351, −2.759636549324124, −2.143581593499180, −1.799478464373610, −0.7605841431519723, 0, 0.7605841431519723, 1.799478464373610, 2.143581593499180, 2.759636549324124, 3.479309431914351, 4.275756555028535, 4.590459198245138, 5.016498524343317, 5.924225316257671, 6.173066757229306, 6.672434129333824, 7.513945014225045, 7.850209919893827, 8.470377634647546, 8.662313198585261, 9.187247729924644, 10.07247585016579, 10.50387106125530, 10.84655002473034, 11.08786207178903, 11.86607430725351, 12.24229730870824, 12.94766962525565, 13.20263552450193, 13.74244449503144

Graph of the $Z$-function along the critical line