Properties

Label 2-360e2-1.1-c1-0-113
Degree $2$
Conductor $129600$
Sign $1$
Analytic cond. $1034.86$
Root an. cond. $32.1692$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s − 11-s − 2·17-s + 3·19-s + 4·23-s + 3·29-s + 31-s + 10·37-s + 41-s + 10·43-s − 10·47-s − 3·49-s − 6·53-s + 13·59-s + 10·61-s + 8·67-s + 9·71-s + 14·73-s − 2·77-s − 10·83-s + 13·89-s + 10·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  + 0.755·7-s − 0.301·11-s − 0.485·17-s + 0.688·19-s + 0.834·23-s + 0.557·29-s + 0.179·31-s + 1.64·37-s + 0.156·41-s + 1.52·43-s − 1.45·47-s − 3/7·49-s − 0.824·53-s + 1.69·59-s + 1.28·61-s + 0.977·67-s + 1.06·71-s + 1.63·73-s − 0.227·77-s − 1.09·83-s + 1.37·89-s + 1.01·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 129600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 129600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(129600\)    =    \(2^{6} \cdot 3^{4} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(1034.86\)
Root analytic conductor: \(32.1692\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 129600,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.638603476\)
\(L(\frac12)\) \(\approx\) \(3.638603476\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + T + p T^{2} \) 1.11.b
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 3 T + p T^{2} \) 1.19.ad
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 - T + p T^{2} \) 1.31.ab
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - T + p T^{2} \) 1.41.ab
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 13 T + p T^{2} \) 1.59.an
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 9 T + p T^{2} \) 1.71.aj
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 10 T + p T^{2} \) 1.83.k
89 \( 1 - 13 T + p T^{2} \) 1.89.an
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.43124276583120, −12.88849090235893, −12.75422491490692, −11.95879541760687, −11.37164577907931, −11.21690219783396, −10.77119083460325, −9.928765824680747, −9.729533524607559, −9.115532882270369, −8.498196781777018, −8.103936888883946, −7.666671800349966, −7.070130876117131, −6.570204545708772, −5.988923182362385, −5.385341839518226, −4.796075047870163, −4.580002596272112, −3.720756615525069, −3.212444439968686, −2.409311993279658, −2.077773676729172, −1.046217952531064, −0.6825753473177828, 0.6825753473177828, 1.046217952531064, 2.077773676729172, 2.409311993279658, 3.212444439968686, 3.720756615525069, 4.580002596272112, 4.796075047870163, 5.385341839518226, 5.988923182362385, 6.570204545708772, 7.070130876117131, 7.666671800349966, 8.103936888883946, 8.498196781777018, 9.115532882270369, 9.729533524607559, 9.928765824680747, 10.77119083460325, 11.21690219783396, 11.37164577907931, 11.95879541760687, 12.75422491490692, 12.88849090235893, 13.43124276583120

Graph of the $Z$-function along the critical line