Properties

Label 2-360e2-1.1-c1-0-10
Degree $2$
Conductor $129600$
Sign $1$
Analytic cond. $1034.86$
Root an. cond. $32.1692$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s − 3·11-s − 4·13-s + 6·17-s − 7·19-s − 6·23-s + 3·29-s − 5·31-s − 4·37-s − 3·41-s − 8·43-s − 3·49-s + 6·53-s + 3·59-s − 14·61-s − 2·67-s + 15·71-s + 10·73-s − 6·77-s − 8·79-s − 15·89-s − 8·91-s − 8·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  + 0.755·7-s − 0.904·11-s − 1.10·13-s + 1.45·17-s − 1.60·19-s − 1.25·23-s + 0.557·29-s − 0.898·31-s − 0.657·37-s − 0.468·41-s − 1.21·43-s − 3/7·49-s + 0.824·53-s + 0.390·59-s − 1.79·61-s − 0.244·67-s + 1.78·71-s + 1.17·73-s − 0.683·77-s − 0.900·79-s − 1.58·89-s − 0.838·91-s − 0.812·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 129600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 129600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(129600\)    =    \(2^{6} \cdot 3^{4} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(1034.86\)
Root analytic conductor: \(32.1692\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 129600,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6456953528\)
\(L(\frac12)\) \(\approx\) \(0.6456953528\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 15 T + p T^{2} \) 1.71.ap
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.59952485900270, −12.88807325259870, −12.36814495627254, −12.24583430100490, −11.62479750875153, −10.99414822713559, −10.57400650096609, −10.07290813372633, −9.815877770011821, −9.109580967818572, −8.305967897921831, −8.160314024898645, −7.758168769961897, −7.016022971953503, −6.695359816847127, −5.710897242846235, −5.587013260153159, −4.817091843741530, −4.540376527107462, −3.744235245873947, −3.197136913813510, −2.405302822033926, −1.995171121491172, −1.350796787537349, −0.2321894647259165, 0.2321894647259165, 1.350796787537349, 1.995171121491172, 2.405302822033926, 3.197136913813510, 3.744235245873947, 4.540376527107462, 4.817091843741530, 5.587013260153159, 5.710897242846235, 6.695359816847127, 7.016022971953503, 7.758168769961897, 8.160314024898645, 8.305967897921831, 9.109580967818572, 9.815877770011821, 10.07290813372633, 10.57400650096609, 10.99414822713559, 11.62479750875153, 12.24583430100490, 12.36814495627254, 12.88807325259870, 13.59952485900270

Graph of the $Z$-function along the critical line