Properties

Label 2-35700-1.1-c1-0-9
Degree $2$
Conductor $35700$
Sign $1$
Analytic cond. $285.065$
Root an. cond. $16.8838$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 7-s + 9-s − 2·11-s − 2·13-s − 17-s + 5·19-s + 21-s − 4·23-s + 27-s + 9·29-s − 2·31-s − 2·33-s − 6·37-s − 2·39-s + 8·41-s − 12·43-s − 8·47-s + 49-s − 51-s − 10·53-s + 5·57-s + 15·61-s + 63-s − 10·67-s − 4·69-s − 8·71-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.377·7-s + 1/3·9-s − 0.603·11-s − 0.554·13-s − 0.242·17-s + 1.14·19-s + 0.218·21-s − 0.834·23-s + 0.192·27-s + 1.67·29-s − 0.359·31-s − 0.348·33-s − 0.986·37-s − 0.320·39-s + 1.24·41-s − 1.82·43-s − 1.16·47-s + 1/7·49-s − 0.140·51-s − 1.37·53-s + 0.662·57-s + 1.92·61-s + 0.125·63-s − 1.22·67-s − 0.481·69-s − 0.949·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35700\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(285.065\)
Root analytic conductor: \(16.8838\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 35700,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.530695387\)
\(L(\frac12)\) \(\approx\) \(2.530695387\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 - T \)
17 \( 1 + T \)
good11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 15 T + p T^{2} \) 1.61.ap
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - T + p T^{2} \) 1.73.ab
79 \( 1 + T + p T^{2} \) 1.79.b
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - T + p T^{2} \) 1.89.ab
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.79747923846836, −14.24766837552465, −14.12680634960552, −13.29892935726395, −13.00281762321112, −12.24673476336066, −11.81301962329101, −11.32065789709487, −10.56366023243684, −9.949711701716565, −9.824749469751435, −8.892950791652243, −8.481438559000264, −7.886900767915667, −7.464570680374822, −6.839291004659055, −6.181344734926901, −5.416272822292424, −4.824053518314557, −4.419986408610175, −3.380411611902854, −3.052359119853336, −2.180838902185656, −1.606470191481376, −0.5612559084387898, 0.5612559084387898, 1.606470191481376, 2.180838902185656, 3.052359119853336, 3.380411611902854, 4.419986408610175, 4.824053518314557, 5.416272822292424, 6.181344734926901, 6.839291004659055, 7.464570680374822, 7.886900767915667, 8.481438559000264, 8.892950791652243, 9.824749469751435, 9.949711701716565, 10.56366023243684, 11.32065789709487, 11.81301962329101, 12.24673476336066, 13.00281762321112, 13.29892935726395, 14.12680634960552, 14.24766837552465, 14.79747923846836

Graph of the $Z$-function along the critical line