Properties

Label 2-35700-1.1-c1-0-6
Degree $2$
Conductor $35700$
Sign $1$
Analytic cond. $285.065$
Root an. cond. $16.8838$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 7-s + 9-s − 6·13-s − 17-s + 6·19-s + 21-s + 2·23-s − 27-s + 2·29-s − 8·31-s − 4·37-s + 6·39-s + 10·41-s − 6·43-s + 8·47-s + 49-s + 51-s + 12·53-s − 6·57-s + 4·59-s − 4·61-s − 63-s − 10·67-s − 2·69-s − 6·73-s − 8·79-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.377·7-s + 1/3·9-s − 1.66·13-s − 0.242·17-s + 1.37·19-s + 0.218·21-s + 0.417·23-s − 0.192·27-s + 0.371·29-s − 1.43·31-s − 0.657·37-s + 0.960·39-s + 1.56·41-s − 0.914·43-s + 1.16·47-s + 1/7·49-s + 0.140·51-s + 1.64·53-s − 0.794·57-s + 0.520·59-s − 0.512·61-s − 0.125·63-s − 1.22·67-s − 0.240·69-s − 0.702·73-s − 0.900·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35700\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(285.065\)
Root analytic conductor: \(16.8838\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 35700,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.063596266\)
\(L(\frac12)\) \(\approx\) \(1.063596266\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 + T \)
17 \( 1 + T \)
good11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 6 T + p T^{2} \) 1.13.g
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.92945975901190, −14.46564554344203, −13.85882995350342, −13.29376615266771, −12.76053893201138, −12.15792894742196, −11.92976638470658, −11.29768085694515, −10.59519540322880, −10.23615765253381, −9.526194452636085, −9.254759496418454, −8.552944210385648, −7.598804488963832, −7.262874508197664, −6.939325497831495, −6.011247452385401, −5.488821648445463, −5.037159335043510, −4.371220491421654, −3.654925556211697, −2.865671583644946, −2.291113537762914, −1.317094239770093, −0.4142488174418841, 0.4142488174418841, 1.317094239770093, 2.291113537762914, 2.865671583644946, 3.654925556211697, 4.371220491421654, 5.037159335043510, 5.488821648445463, 6.011247452385401, 6.939325497831495, 7.262874508197664, 7.598804488963832, 8.552944210385648, 9.254759496418454, 9.526194452636085, 10.23615765253381, 10.59519540322880, 11.29768085694515, 11.92976638470658, 12.15792894742196, 12.76053893201138, 13.29376615266771, 13.85882995350342, 14.46564554344203, 14.92945975901190

Graph of the $Z$-function along the critical line