Properties

Label 2-35700-1.1-c1-0-27
Degree $2$
Conductor $35700$
Sign $-1$
Analytic cond. $285.065$
Root an. cond. $16.8838$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 7-s + 9-s + 3·11-s − 2·13-s + 17-s − 4·19-s + 21-s + 9·23-s − 27-s + 6·29-s − 7·31-s − 3·33-s + 4·37-s + 2·39-s − 6·41-s + 4·43-s − 3·47-s + 49-s − 51-s − 12·53-s + 4·57-s − 3·59-s − 61-s − 63-s − 5·67-s − 9·69-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.377·7-s + 1/3·9-s + 0.904·11-s − 0.554·13-s + 0.242·17-s − 0.917·19-s + 0.218·21-s + 1.87·23-s − 0.192·27-s + 1.11·29-s − 1.25·31-s − 0.522·33-s + 0.657·37-s + 0.320·39-s − 0.937·41-s + 0.609·43-s − 0.437·47-s + 1/7·49-s − 0.140·51-s − 1.64·53-s + 0.529·57-s − 0.390·59-s − 0.128·61-s − 0.125·63-s − 0.610·67-s − 1.08·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35700\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(285.065\)
Root analytic conductor: \(16.8838\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 35700,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 + T \)
17 \( 1 - T \)
good11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 9 T + p T^{2} \) 1.23.aj
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 7 T + p T^{2} \) 1.31.h
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 - 15 T + p T^{2} \) 1.71.ap
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 9 T + p T^{2} \) 1.83.j
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.23360787119393, −14.51646636425771, −14.40207441984272, −13.48977228504803, −12.98961651522742, −12.49610612575618, −12.16340551077560, −11.42592733681796, −10.96550962607559, −10.58185458112117, −9.744313168344331, −9.443531762254715, −8.824482633343530, −8.240883289479308, −7.435354972550483, −6.920403601231555, −6.470881278923465, −5.954904536585004, −5.102585084972413, −4.738554388194141, −3.997773697940910, −3.303624791393954, −2.634679082747410, −1.687705305508358, −0.9651605169435147, 0, 0.9651605169435147, 1.687705305508358, 2.634679082747410, 3.303624791393954, 3.997773697940910, 4.738554388194141, 5.102585084972413, 5.954904536585004, 6.470881278923465, 6.920403601231555, 7.435354972550483, 8.240883289479308, 8.824482633343530, 9.443531762254715, 9.744313168344331, 10.58185458112117, 10.96550962607559, 11.42592733681796, 12.16340551077560, 12.49610612575618, 12.98961651522742, 13.48977228504803, 14.40207441984272, 14.51646636425771, 15.23360787119393

Graph of the $Z$-function along the critical line