Properties

Label 2-35700-1.1-c1-0-22
Degree $2$
Conductor $35700$
Sign $-1$
Analytic cond. $285.065$
Root an. cond. $16.8838$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 7-s + 9-s − 2·11-s + 2·13-s + 17-s + 21-s + 4·23-s − 27-s − 6·29-s − 2·31-s + 2·33-s + 6·37-s − 2·39-s − 2·41-s + 2·43-s − 2·47-s + 49-s − 51-s − 10·53-s − 10·61-s − 63-s + 10·67-s − 4·69-s + 2·71-s + 14·73-s + 2·77-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.377·7-s + 1/3·9-s − 0.603·11-s + 0.554·13-s + 0.242·17-s + 0.218·21-s + 0.834·23-s − 0.192·27-s − 1.11·29-s − 0.359·31-s + 0.348·33-s + 0.986·37-s − 0.320·39-s − 0.312·41-s + 0.304·43-s − 0.291·47-s + 1/7·49-s − 0.140·51-s − 1.37·53-s − 1.28·61-s − 0.125·63-s + 1.22·67-s − 0.481·69-s + 0.237·71-s + 1.63·73-s + 0.227·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35700\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(285.065\)
Root analytic conductor: \(16.8838\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 35700,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 + T \)
17 \( 1 - T \)
good11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 - 2 T + p T^{2} \) 1.71.ac
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.19065399138413, −14.80700144492361, −14.08010894424787, −13.48456199654634, −13.03005947160967, −12.62845555305970, −12.10059785506294, −11.33552133413772, −10.97960505230449, −10.60645820944841, −9.811181160159895, −9.398218955225325, −8.885155154916274, −7.928432906407905, −7.770567683112612, −6.880019451500589, −6.456176173616909, −5.803206506523039, −5.278895515693994, −4.727702489425582, −3.910061246565332, −3.349675156070289, −2.608714928587392, −1.747101380075048, −0.9085194513925978, 0, 0.9085194513925978, 1.747101380075048, 2.608714928587392, 3.349675156070289, 3.910061246565332, 4.727702489425582, 5.278895515693994, 5.803206506523039, 6.456176173616909, 6.880019451500589, 7.770567683112612, 7.928432906407905, 8.885155154916274, 9.398218955225325, 9.811181160159895, 10.60645820944841, 10.97960505230449, 11.33552133413772, 12.10059785506294, 12.62845555305970, 13.03005947160967, 13.48456199654634, 14.08010894424787, 14.80700144492361, 15.19065399138413

Graph of the $Z$-function along the critical line