Properties

Label 2-35700-1.1-c1-0-15
Degree $2$
Conductor $35700$
Sign $1$
Analytic cond. $285.065$
Root an. cond. $16.8838$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 7-s + 9-s + 2·11-s + 2·13-s − 17-s + 21-s − 4·23-s + 27-s − 2·29-s − 2·31-s + 2·33-s + 10·37-s + 2·39-s + 10·41-s + 10·43-s + 2·47-s + 49-s − 51-s + 2·53-s − 8·59-s + 6·61-s + 63-s − 6·67-s − 4·69-s + 6·71-s − 6·73-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.377·7-s + 1/3·9-s + 0.603·11-s + 0.554·13-s − 0.242·17-s + 0.218·21-s − 0.834·23-s + 0.192·27-s − 0.371·29-s − 0.359·31-s + 0.348·33-s + 1.64·37-s + 0.320·39-s + 1.56·41-s + 1.52·43-s + 0.291·47-s + 1/7·49-s − 0.140·51-s + 0.274·53-s − 1.04·59-s + 0.768·61-s + 0.125·63-s − 0.733·67-s − 0.481·69-s + 0.712·71-s − 0.702·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35700\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(285.065\)
Root analytic conductor: \(16.8838\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 35700,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.607756228\)
\(L(\frac12)\) \(\approx\) \(3.607756228\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 - T \)
17 \( 1 + T \)
good11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 6 T + p T^{2} \) 1.67.g
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.78891435426205, −14.40022031432353, −13.98538524316629, −13.41800131009536, −12.85450028926676, −12.39238939310275, −11.74184438408250, −11.15161972467490, −10.81560885440072, −10.07606102793122, −9.415695652362094, −9.094021487980475, −8.528938015136075, −7.731485736747819, −7.622869178934187, −6.746123634220432, −6.059769544042019, −5.720235411238006, −4.735140558073371, −4.105822009716103, −3.817772523985359, −2.828235930587855, −2.269600398753690, −1.474216008139107, −0.7142044841829094, 0.7142044841829094, 1.474216008139107, 2.269600398753690, 2.828235930587855, 3.817772523985359, 4.105822009716103, 4.735140558073371, 5.720235411238006, 6.059769544042019, 6.746123634220432, 7.622869178934187, 7.731485736747819, 8.528938015136075, 9.094021487980475, 9.415695652362094, 10.07606102793122, 10.81560885440072, 11.15161972467490, 11.74184438408250, 12.39238939310275, 12.85450028926676, 13.41800131009536, 13.98538524316629, 14.40022031432353, 14.78891435426205

Graph of the $Z$-function along the critical line