Properties

Label 2-3520-1.1-c1-0-17
Degree $2$
Conductor $3520$
Sign $1$
Analytic cond. $28.1073$
Root an. cond. $5.30163$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 4·7-s − 3·9-s + 11-s − 6·13-s − 6·17-s − 4·19-s + 4·23-s + 25-s + 2·29-s + 8·31-s − 4·35-s + 10·37-s + 10·41-s + 3·45-s + 4·47-s + 9·49-s + 10·53-s − 55-s + 4·59-s + 2·61-s − 12·63-s + 6·65-s + 8·67-s − 14·73-s + 4·77-s − 16·79-s + ⋯
L(s)  = 1  − 0.447·5-s + 1.51·7-s − 9-s + 0.301·11-s − 1.66·13-s − 1.45·17-s − 0.917·19-s + 0.834·23-s + 1/5·25-s + 0.371·29-s + 1.43·31-s − 0.676·35-s + 1.64·37-s + 1.56·41-s + 0.447·45-s + 0.583·47-s + 9/7·49-s + 1.37·53-s − 0.134·55-s + 0.520·59-s + 0.256·61-s − 1.51·63-s + 0.744·65-s + 0.977·67-s − 1.63·73-s + 0.455·77-s − 1.80·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3520\)    =    \(2^{6} \cdot 5 \cdot 11\)
Sign: $1$
Analytic conductor: \(28.1073\)
Root analytic conductor: \(5.30163\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3520,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.580859577\)
\(L(\frac12)\) \(\approx\) \(1.580859577\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 + T \)
11 \( 1 - T \)
good3 \( 1 + p T^{2} \) 1.3.a
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.603124223940541989763355707345, −7.86875493420056316464330358093, −7.23681139726552369590830113224, −6.37688806503460867410431993597, −5.43357459184150838511384967210, −4.49963301673034241264130696902, −4.38100491156023694629623840508, −2.68898784528613655503149585492, −2.26335656784139746959742713088, −0.72422113221940546069698321958, 0.72422113221940546069698321958, 2.26335656784139746959742713088, 2.68898784528613655503149585492, 4.38100491156023694629623840508, 4.49963301673034241264130696902, 5.43357459184150838511384967210, 6.37688806503460867410431993597, 7.23681139726552369590830113224, 7.86875493420056316464330358093, 8.603124223940541989763355707345

Graph of the $Z$-function along the critical line