Properties

Label 2-348726-1.1-c1-0-52
Degree $2$
Conductor $348726$
Sign $-1$
Analytic cond. $2784.59$
Root an. cond. $52.7692$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s + 5-s − 6-s − 7-s + 8-s + 9-s + 10-s − 3·11-s − 12-s + 6·13-s − 14-s − 15-s + 16-s + 17-s + 18-s + 20-s + 21-s − 3·22-s + 23-s − 24-s − 4·25-s + 6·26-s − 27-s − 28-s + 8·29-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s − 0.377·7-s + 0.353·8-s + 1/3·9-s + 0.316·10-s − 0.904·11-s − 0.288·12-s + 1.66·13-s − 0.267·14-s − 0.258·15-s + 1/4·16-s + 0.242·17-s + 0.235·18-s + 0.223·20-s + 0.218·21-s − 0.639·22-s + 0.208·23-s − 0.204·24-s − 4/5·25-s + 1.17·26-s − 0.192·27-s − 0.188·28-s + 1.48·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 348726 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 348726 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(348726\)    =    \(2 \cdot 3 \cdot 7 \cdot 19^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(2784.59\)
Root analytic conductor: \(52.7692\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 348726,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
7 \( 1 + T \)
19 \( 1 \)
23 \( 1 - T \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 - T + p T^{2} \) 1.17.ab
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + 2 T + p T^{2} \) 1.59.c
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 7 T + p T^{2} \) 1.89.ah
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.92901088593321, −12.28575010878946, −11.95501466492428, −11.40813976311840, −11.10198360567617, −10.44695270016749, −10.22007893036651, −9.889465992455367, −9.084458611001842, −8.651313788086243, −8.164641343330704, −7.661096662209699, −7.075691590551192, −6.496782523804287, −6.258387452728759, −5.749172580269018, −5.344520103225724, −4.856591731297775, −4.330116654966627, −3.651475018786992, −3.290819852055563, −2.762778774945347, −1.971935904946769, −1.521937363427983, −0.8345036130558969, 0, 0.8345036130558969, 1.521937363427983, 1.971935904946769, 2.762778774945347, 3.290819852055563, 3.651475018786992, 4.330116654966627, 4.856591731297775, 5.344520103225724, 5.749172580269018, 6.258387452728759, 6.496782523804287, 7.075691590551192, 7.661096662209699, 8.164641343330704, 8.651313788086243, 9.084458611001842, 9.889465992455367, 10.22007893036651, 10.44695270016749, 11.10198360567617, 11.40813976311840, 11.95501466492428, 12.28575010878946, 12.92901088593321

Graph of the $Z$-function along the critical line