Properties

Label 2-3480-1.1-c1-0-46
Degree $2$
Conductor $3480$
Sign $-1$
Analytic cond. $27.7879$
Root an. cond. $5.27142$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s − 2·7-s + 9-s + 3·11-s − 6·13-s − 15-s + 4·17-s − 2·19-s − 2·21-s + 23-s + 25-s + 27-s + 29-s + 3·33-s + 2·35-s − 3·37-s − 6·39-s − 5·41-s − 43-s − 45-s + 2·47-s − 3·49-s + 4·51-s + 53-s − 3·55-s − 2·57-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s − 0.755·7-s + 1/3·9-s + 0.904·11-s − 1.66·13-s − 0.258·15-s + 0.970·17-s − 0.458·19-s − 0.436·21-s + 0.208·23-s + 1/5·25-s + 0.192·27-s + 0.185·29-s + 0.522·33-s + 0.338·35-s − 0.493·37-s − 0.960·39-s − 0.780·41-s − 0.152·43-s − 0.149·45-s + 0.291·47-s − 3/7·49-s + 0.560·51-s + 0.137·53-s − 0.404·55-s − 0.264·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3480 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3480\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 29\)
Sign: $-1$
Analytic conductor: \(27.7879\)
Root analytic conductor: \(5.27142\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3480,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
29 \( 1 - T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - T + p T^{2} \) 1.23.ab
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 - T + p T^{2} \) 1.53.ab
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 12 T + p T^{2} \) 1.61.m
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 9 T + p T^{2} \) 1.83.j
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 5 T + p T^{2} \) 1.97.af
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.208437996531495020373479818233, −7.41430900414930497647301928165, −6.92249087490641000206533907977, −6.08678678212460068677357007738, −5.02675017190925940882265645467, −4.26099377949053555684999232267, −3.37028702078793469876326589654, −2.73652512678418972473043268488, −1.52113777313121416861734275364, 0, 1.52113777313121416861734275364, 2.73652512678418972473043268488, 3.37028702078793469876326589654, 4.26099377949053555684999232267, 5.02675017190925940882265645467, 6.08678678212460068677357007738, 6.92249087490641000206533907977, 7.41430900414930497647301928165, 8.208437996531495020373479818233

Graph of the $Z$-function along the critical line