Properties

Label 2-34650-1.1-c1-0-108
Degree $2$
Conductor $34650$
Sign $-1$
Analytic cond. $276.681$
Root an. cond. $16.6337$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 7-s + 8-s + 11-s − 2·13-s + 14-s + 16-s − 2·17-s + 4·19-s + 22-s + 4·23-s − 2·26-s + 28-s − 6·29-s + 32-s − 2·34-s + 6·37-s + 4·38-s − 10·41-s − 4·43-s + 44-s + 4·46-s + 49-s − 2·52-s − 2·53-s + 56-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.377·7-s + 0.353·8-s + 0.301·11-s − 0.554·13-s + 0.267·14-s + 1/4·16-s − 0.485·17-s + 0.917·19-s + 0.213·22-s + 0.834·23-s − 0.392·26-s + 0.188·28-s − 1.11·29-s + 0.176·32-s − 0.342·34-s + 0.986·37-s + 0.648·38-s − 1.56·41-s − 0.609·43-s + 0.150·44-s + 0.589·46-s + 1/7·49-s − 0.277·52-s − 0.274·53-s + 0.133·56-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 34650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 34650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(34650\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(276.681\)
Root analytic conductor: \(16.6337\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 34650,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 - T \)
11 \( 1 - T \)
good13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.13007307426324, −14.71547948326151, −14.19615701974307, −13.60774420356936, −13.18087312978102, −12.71634928398572, −11.88732036197002, −11.74401875321549, −11.10922725485248, −10.58657839590848, −9.935358227718080, −9.311991818423632, −8.872744064334182, −8.033935344596786, −7.542959749569439, −7.008676003866532, −6.444678781639780, −5.729131605073232, −5.164703103780253, −4.667561764048389, −4.050432994702717, −3.259810169352239, −2.772216903813262, −1.852749125621308, −1.257771976061066, 0, 1.257771976061066, 1.852749125621308, 2.772216903813262, 3.259810169352239, 4.050432994702717, 4.667561764048389, 5.164703103780253, 5.729131605073232, 6.444678781639780, 7.008676003866532, 7.542959749569439, 8.033935344596786, 8.872744064334182, 9.311991818423632, 9.935358227718080, 10.58657839590848, 11.10922725485248, 11.74401875321549, 11.88732036197002, 12.71634928398572, 13.18087312978102, 13.60774420356936, 14.19615701974307, 14.71547948326151, 15.13007307426324

Graph of the $Z$-function along the critical line