| L(s)  = 1 | + 2-s     + 4-s       + 7-s   + 8-s       + 11-s     − 2·13-s   + 14-s     + 16-s   − 2·17-s     + 4·19-s       + 22-s   + 4·23-s       − 2·26-s     + 28-s   − 6·29-s       + 32-s     − 2·34-s       + 6·37-s   + 4·38-s       − 10·41-s     − 4·43-s   + 44-s     + 4·46-s       + 49-s       − 2·52-s   − 2·53-s       + 56-s  + ⋯ | 
| L(s)  = 1 | + 0.707·2-s     + 1/2·4-s       + 0.377·7-s   + 0.353·8-s       + 0.301·11-s     − 0.554·13-s   + 0.267·14-s     + 1/4·16-s   − 0.485·17-s     + 0.917·19-s       + 0.213·22-s   + 0.834·23-s       − 0.392·26-s     + 0.188·28-s   − 1.11·29-s       + 0.176·32-s     − 0.342·34-s       + 0.986·37-s   + 0.648·38-s       − 1.56·41-s     − 0.609·43-s   + 0.150·44-s     + 0.589·46-s       + 1/7·49-s       − 0.277·52-s   − 0.274·53-s       + 0.133·56-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 34650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 34650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(=\) | \(0\) | 
    
      | \(L(\frac12)\) | \(=\) | \(0\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 | \( 1 - T \) |  | 
|  | 3 | \( 1 \) |  | 
|  | 5 | \( 1 \) |  | 
|  | 7 | \( 1 - T \) |  | 
|  | 11 | \( 1 - T \) |  | 
| good | 13 | \( 1 + 2 T + p T^{2} \) | 1.13.c | 
|  | 17 | \( 1 + 2 T + p T^{2} \) | 1.17.c | 
|  | 19 | \( 1 - 4 T + p T^{2} \) | 1.19.ae | 
|  | 23 | \( 1 - 4 T + p T^{2} \) | 1.23.ae | 
|  | 29 | \( 1 + 6 T + p T^{2} \) | 1.29.g | 
|  | 31 | \( 1 + p T^{2} \) | 1.31.a | 
|  | 37 | \( 1 - 6 T + p T^{2} \) | 1.37.ag | 
|  | 41 | \( 1 + 10 T + p T^{2} \) | 1.41.k | 
|  | 43 | \( 1 + 4 T + p T^{2} \) | 1.43.e | 
|  | 47 | \( 1 + p T^{2} \) | 1.47.a | 
|  | 53 | \( 1 + 2 T + p T^{2} \) | 1.53.c | 
|  | 59 | \( 1 + 4 T + p T^{2} \) | 1.59.e | 
|  | 61 | \( 1 + 10 T + p T^{2} \) | 1.61.k | 
|  | 67 | \( 1 + 8 T + p T^{2} \) | 1.67.i | 
|  | 71 | \( 1 + p T^{2} \) | 1.71.a | 
|  | 73 | \( 1 + 2 T + p T^{2} \) | 1.73.c | 
|  | 79 | \( 1 + 8 T + p T^{2} \) | 1.79.i | 
|  | 83 | \( 1 + 4 T + p T^{2} \) | 1.83.e | 
|  | 89 | \( 1 - 2 T + p T^{2} \) | 1.89.ac | 
|  | 97 | \( 1 + 2 T + p T^{2} \) | 1.97.c | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−15.13007307426324, −14.71547948326151, −14.19615701974307, −13.60774420356936, −13.18087312978102, −12.71634928398572, −11.88732036197002, −11.74401875321549, −11.10922725485248, −10.58657839590848, −9.935358227718080, −9.311991818423632, −8.872744064334182, −8.033935344596786, −7.542959749569439, −7.008676003866532, −6.444678781639780, −5.729131605073232, −5.164703103780253, −4.667561764048389, −4.050432994702717, −3.259810169352239, −2.772216903813262, −1.852749125621308, −1.257771976061066, 0, 
1.257771976061066, 1.852749125621308, 2.772216903813262, 3.259810169352239, 4.050432994702717, 4.667561764048389, 5.164703103780253, 5.729131605073232, 6.444678781639780, 7.008676003866532, 7.542959749569439, 8.033935344596786, 8.872744064334182, 9.311991818423632, 9.935358227718080, 10.58657839590848, 11.10922725485248, 11.74401875321549, 11.88732036197002, 12.71634928398572, 13.18087312978102, 13.60774420356936, 14.19615701974307, 14.71547948326151, 15.13007307426324
