Properties

Label 2-33600-1.1-c1-0-133
Degree $2$
Conductor $33600$
Sign $1$
Analytic cond. $268.297$
Root an. cond. $16.3797$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 7-s + 9-s + 3·11-s + 2·13-s + 4·17-s + 2·19-s − 21-s + 9·23-s + 27-s + 7·29-s + 10·31-s + 3·33-s + 5·37-s + 2·39-s − 8·41-s − 7·43-s + 10·47-s + 49-s + 4·51-s + 10·53-s + 2·57-s + 6·59-s + 8·61-s − 63-s − 13·67-s + 9·69-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.377·7-s + 1/3·9-s + 0.904·11-s + 0.554·13-s + 0.970·17-s + 0.458·19-s − 0.218·21-s + 1.87·23-s + 0.192·27-s + 1.29·29-s + 1.79·31-s + 0.522·33-s + 0.821·37-s + 0.320·39-s − 1.24·41-s − 1.06·43-s + 1.45·47-s + 1/7·49-s + 0.560·51-s + 1.37·53-s + 0.264·57-s + 0.781·59-s + 1.02·61-s − 0.125·63-s − 1.58·67-s + 1.08·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 33600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 33600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(33600\)    =    \(2^{6} \cdot 3 \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(268.297\)
Root analytic conductor: \(16.3797\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 33600,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.390880379\)
\(L(\frac12)\) \(\approx\) \(4.390880379\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 + T \)
good11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 9 T + p T^{2} \) 1.23.aj
29 \( 1 - 7 T + p T^{2} \) 1.29.ah
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 - 5 T + p T^{2} \) 1.37.af
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 + 13 T + p T^{2} \) 1.67.n
71 \( 1 - T + p T^{2} \) 1.71.ab
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + 13 T + p T^{2} \) 1.79.n
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.96914552480740, −14.51356336844942, −13.87887263934233, −13.47386101453575, −13.07993134853987, −12.30217563261240, −11.78066836366398, −11.54198963655381, −10.47848755517819, −10.23839323878630, −9.622915742587802, −8.986922674375828, −8.595130210297279, −8.084416234347939, −7.257599668582351, −6.839052875370789, −6.300106231143906, −5.582752319484975, −4.857571297062471, −4.255075400696543, −3.470442415047950, −3.062529344763768, −2.394371390101268, −1.142347341601363, −0.9777676854875983, 0.9777676854875983, 1.142347341601363, 2.394371390101268, 3.062529344763768, 3.470442415047950, 4.255075400696543, 4.857571297062471, 5.582752319484975, 6.300106231143906, 6.839052875370789, 7.257599668582351, 8.084416234347939, 8.595130210297279, 8.986922674375828, 9.622915742587802, 10.23839323878630, 10.47848755517819, 11.54198963655381, 11.78066836366398, 12.30217563261240, 13.07993134853987, 13.47386101453575, 13.87887263934233, 14.51356336844942, 14.96914552480740

Graph of the $Z$-function along the critical line