Properties

Label 2-33462-1.1-c1-0-31
Degree $2$
Conductor $33462$
Sign $-1$
Analytic cond. $267.195$
Root an. cond. $16.3461$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 3·5-s − 2·7-s − 8-s + 3·10-s + 11-s + 2·14-s + 16-s − 17-s + 6·19-s − 3·20-s − 22-s − 8·23-s + 4·25-s − 2·28-s − 29-s − 32-s + 34-s + 6·35-s + 3·37-s − 6·38-s + 3·40-s + 11·41-s + 4·43-s + 44-s + 8·46-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 1.34·5-s − 0.755·7-s − 0.353·8-s + 0.948·10-s + 0.301·11-s + 0.534·14-s + 1/4·16-s − 0.242·17-s + 1.37·19-s − 0.670·20-s − 0.213·22-s − 1.66·23-s + 4/5·25-s − 0.377·28-s − 0.185·29-s − 0.176·32-s + 0.171·34-s + 1.01·35-s + 0.493·37-s − 0.973·38-s + 0.474·40-s + 1.71·41-s + 0.609·43-s + 0.150·44-s + 1.17·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 33462 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 33462 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(33462\)    =    \(2 \cdot 3^{2} \cdot 11 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(267.195\)
Root analytic conductor: \(16.3461\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 33462,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
11 \( 1 - T \)
13 \( 1 \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
7 \( 1 + 2 T + p T^{2} \) 1.7.c
17 \( 1 + T + p T^{2} \) 1.17.b
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + T + p T^{2} \) 1.29.b
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 - 11 T + p T^{2} \) 1.41.al
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 11 T + p T^{2} \) 1.53.l
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 + 6 T + p T^{2} \) 1.67.g
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 + 2 T + p T^{2} \) 1.83.c
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.62345916144850, −14.69118508054562, −14.44570906848090, −13.73815253729166, −12.93114185531709, −12.59859264958217, −11.86920607716773, −11.54742031107410, −11.19862914536143, −10.37269288002303, −9.801596439125486, −9.469385109945099, −8.758423711071202, −8.195611089831604, −7.532405990079204, −7.448632514826294, −6.543475331438847, −6.069257871926116, −5.371934418287358, −4.362476984906328, −3.960591507626830, −3.256116455285572, −2.703487377077499, −1.689371735720014, −0.7457324405588255, 0, 0.7457324405588255, 1.689371735720014, 2.703487377077499, 3.256116455285572, 3.960591507626830, 4.362476984906328, 5.371934418287358, 6.069257871926116, 6.543475331438847, 7.448632514826294, 7.532405990079204, 8.195611089831604, 8.758423711071202, 9.469385109945099, 9.801596439125486, 10.37269288002303, 11.19862914536143, 11.54742031107410, 11.86920607716773, 12.59859264958217, 12.93114185531709, 13.73815253729166, 14.44570906848090, 14.69118508054562, 15.62345916144850

Graph of the $Z$-function along the critical line