Properties

Label 2-330e2-1.1-c1-0-44
Degree $2$
Conductor $108900$
Sign $-1$
Analytic cond. $869.570$
Root an. cond. $29.4884$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s + 2·13-s − 8·19-s − 4·31-s + 10·37-s + 8·43-s + 9·49-s − 14·61-s + 16·67-s − 10·73-s + 4·79-s − 8·91-s − 14·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  − 1.51·7-s + 0.554·13-s − 1.83·19-s − 0.718·31-s + 1.64·37-s + 1.21·43-s + 9/7·49-s − 1.79·61-s + 1.95·67-s − 1.17·73-s + 0.450·79-s − 0.838·91-s − 1.42·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 108900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 108900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(108900\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(869.570\)
Root analytic conductor: \(29.4884\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 108900,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 - 16 T + p T^{2} \) 1.67.aq
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.78579561060997, −13.28894209251626, −12.97704343626131, −12.44215268627976, −12.27486492659095, −11.32802025182597, −10.90696462140835, −10.59587269012648, −9.913664625206546, −9.440918538813452, −9.132328307182646, −8.465271719509654, −8.049247260007441, −7.312400660459959, −6.829583165654961, −6.236771497520150, −6.048556599004429, −5.426653912218565, −4.493256542039794, −4.101726135921724, −3.587329830090276, −2.861586466503871, −2.438554103628295, −1.634396447817352, −0.7065225390069753, 0, 0.7065225390069753, 1.634396447817352, 2.438554103628295, 2.861586466503871, 3.587329830090276, 4.101726135921724, 4.493256542039794, 5.426653912218565, 6.048556599004429, 6.236771497520150, 6.829583165654961, 7.312400660459959, 8.049247260007441, 8.465271719509654, 9.132328307182646, 9.440918538813452, 9.913664625206546, 10.59587269012648, 10.90696462140835, 11.32802025182597, 12.27486492659095, 12.44215268627976, 12.97704343626131, 13.28894209251626, 13.78579561060997

Graph of the $Z$-function along the critical line