Properties

Label 2-309680-1.1-c1-0-51
Degree $2$
Conductor $309680$
Sign $-1$
Analytic cond. $2472.80$
Root an. cond. $49.7273$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 3·9-s + 3·11-s − 5·17-s + 5·19-s + 25-s − 8·29-s + 5·31-s + 10·37-s − 4·41-s − 43-s − 3·45-s + 7·47-s − 3·53-s + 3·55-s + 12·59-s − 6·61-s + 2·67-s − 6·71-s − 8·73-s − 79-s + 9·81-s − 5·85-s + 15·89-s + 5·95-s − 10·97-s − 9·99-s + ⋯
L(s)  = 1  + 0.447·5-s − 9-s + 0.904·11-s − 1.21·17-s + 1.14·19-s + 1/5·25-s − 1.48·29-s + 0.898·31-s + 1.64·37-s − 0.624·41-s − 0.152·43-s − 0.447·45-s + 1.02·47-s − 0.412·53-s + 0.404·55-s + 1.56·59-s − 0.768·61-s + 0.244·67-s − 0.712·71-s − 0.936·73-s − 0.112·79-s + 81-s − 0.542·85-s + 1.58·89-s + 0.512·95-s − 1.01·97-s − 0.904·99-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 309680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 309680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(309680\)    =    \(2^{4} \cdot 5 \cdot 7^{2} \cdot 79\)
Sign: $-1$
Analytic conductor: \(2472.80\)
Root analytic conductor: \(49.7273\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 309680,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 - T \)
7 \( 1 \)
79 \( 1 + T \)
good3 \( 1 + p T^{2} \) 1.3.a
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 + 5 T + p T^{2} \) 1.17.f
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 - 7 T + p T^{2} \) 1.47.ah
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 8 T + p T^{2} \) 1.73.i
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 15 T + p T^{2} \) 1.89.ap
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.08138497921478, −12.27549228716116, −11.92766158392279, −11.51096217184413, −11.09507569135165, −10.78850824451120, −10.02591096617257, −9.554621695557123, −9.300754744269774, −8.765055135662667, −8.417709389480123, −7.774575862419463, −7.301662400629148, −6.750122270407048, −6.294525347647261, −5.846249851856920, −5.424240544270212, −4.863684042049094, −4.226960903278738, −3.825141650985068, −3.103330847765235, −2.657404711987519, −2.110067821537947, −1.428000057582949, −0.8028680512668185, 0, 0.8028680512668185, 1.428000057582949, 2.110067821537947, 2.657404711987519, 3.103330847765235, 3.825141650985068, 4.226960903278738, 4.863684042049094, 5.424240544270212, 5.846249851856920, 6.294525347647261, 6.750122270407048, 7.301662400629148, 7.774575862419463, 8.417709389480123, 8.765055135662667, 9.300754744269774, 9.554621695557123, 10.02591096617257, 10.78850824451120, 11.09507569135165, 11.51096217184413, 11.92766158392279, 12.27549228716116, 13.08138497921478

Graph of the $Z$-function along the critical line