Properties

Label 309680.ca
Number of curves $1$
Conductor $309680$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ca1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 309680.ca1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 - T\)
\(7\)\(1\)
\(79\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(17\) \( 1 + 5 T + 17 T^{2}\) 1.17.f
\(19\) \( 1 - 5 T + 19 T^{2}\) 1.19.af
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 8 T + 29 T^{2}\) 1.29.i
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 309680.ca do not have complex multiplication.

Modular form 309680.2.a.ca

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} - 3 q^{9} + 3 q^{11} - 5 q^{17} + 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 309680.ca

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
309680.ca1 309680ca1 \([0, 0, 0, 4508, -12201]\) \(263732281344/154296875\) \(-5927468750000\) \([]\) \(409536\) \(1.1403\) \(\Gamma_0(N)\)-optimal