Properties

Label 2-3060-1.1-c1-0-22
Degree $2$
Conductor $3060$
Sign $-1$
Analytic cond. $24.4342$
Root an. cond. $4.94309$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 7-s − 3·11-s − 4·13-s − 17-s + 5·19-s + 6·23-s + 25-s + 3·29-s − 4·31-s − 35-s + 5·37-s − 9·41-s − 10·43-s + 3·47-s − 6·49-s − 3·53-s − 3·55-s − 12·59-s − 10·61-s − 4·65-s − 10·67-s − 73-s + 3·77-s − 4·79-s + 12·83-s − 85-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.377·7-s − 0.904·11-s − 1.10·13-s − 0.242·17-s + 1.14·19-s + 1.25·23-s + 1/5·25-s + 0.557·29-s − 0.718·31-s − 0.169·35-s + 0.821·37-s − 1.40·41-s − 1.52·43-s + 0.437·47-s − 6/7·49-s − 0.412·53-s − 0.404·55-s − 1.56·59-s − 1.28·61-s − 0.496·65-s − 1.22·67-s − 0.117·73-s + 0.341·77-s − 0.450·79-s + 1.31·83-s − 0.108·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3060\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 17\)
Sign: $-1$
Analytic conductor: \(24.4342\)
Root analytic conductor: \(4.94309\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3060,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
17 \( 1 + T \)
good7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 + 4 T + p T^{2} \) 1.13.e
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 5 T + p T^{2} \) 1.37.af
41 \( 1 + 9 T + p T^{2} \) 1.41.j
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + T + p T^{2} \) 1.73.b
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.310200641352159456350389711985, −7.49687733509651346873609559165, −6.93021424771158483571966975624, −6.03689669237326195768388300241, −5.11550548700533921974608157798, −4.74062296251735093151905532428, −3.24964758538908192758533226265, −2.74398924221222077751749040496, −1.53664710484848044917006908777, 0, 1.53664710484848044917006908777, 2.74398924221222077751749040496, 3.24964758538908192758533226265, 4.74062296251735093151905532428, 5.11550548700533921974608157798, 6.03689669237326195768388300241, 6.93021424771158483571966975624, 7.49687733509651346873609559165, 8.310200641352159456350389711985

Graph of the $Z$-function along the critical line