Properties

Label 2-296208-1.1-c1-0-129
Degree $2$
Conductor $296208$
Sign $-1$
Analytic cond. $2365.23$
Root an. cond. $48.6336$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 2·7-s − 3·13-s − 17-s + 5·19-s − 25-s + 6·29-s + 4·35-s − 6·37-s + 4·41-s + 11·43-s − 9·47-s − 3·49-s + 6·53-s + 4·59-s + 4·61-s − 6·65-s − 9·67-s − 8·71-s − 16·73-s + 10·79-s − 9·83-s − 2·85-s − 3·89-s − 6·91-s + 10·95-s − 10·97-s + ⋯
L(s)  = 1  + 0.894·5-s + 0.755·7-s − 0.832·13-s − 0.242·17-s + 1.14·19-s − 1/5·25-s + 1.11·29-s + 0.676·35-s − 0.986·37-s + 0.624·41-s + 1.67·43-s − 1.31·47-s − 3/7·49-s + 0.824·53-s + 0.520·59-s + 0.512·61-s − 0.744·65-s − 1.09·67-s − 0.949·71-s − 1.87·73-s + 1.12·79-s − 0.987·83-s − 0.216·85-s − 0.317·89-s − 0.628·91-s + 1.02·95-s − 1.01·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 296208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 296208 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(296208\)    =    \(2^{4} \cdot 3^{2} \cdot 11^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(2365.23\)
Root analytic conductor: \(48.6336\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 296208,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
17 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
13 \( 1 + 3 T + p T^{2} \) 1.13.d
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 - 11 T + p T^{2} \) 1.43.al
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 + 9 T + p T^{2} \) 1.67.j
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 16 T + p T^{2} \) 1.73.q
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 9 T + p T^{2} \) 1.83.j
89 \( 1 + 3 T + p T^{2} \) 1.89.d
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.96705886717096, −12.42746443658625, −11.90161002911340, −11.72249939886857, −11.03329734065813, −10.64491898066612, −10.08847185746190, −9.728650659266431, −9.389053408744377, −8.723109302005076, −8.400699554890086, −7.767487954084508, −7.273325408411292, −7.008452313583359, −6.202344898727272, −5.865639849036434, −5.284354137294390, −4.947928898218719, −4.396737852031592, −3.869865279452817, −2.969742738874631, −2.707284653470023, −2.000141593334246, −1.505927352729755, −0.9264953367367685, 0, 0.9264953367367685, 1.505927352729755, 2.000141593334246, 2.707284653470023, 2.969742738874631, 3.869865279452817, 4.396737852031592, 4.947928898218719, 5.284354137294390, 5.865639849036434, 6.202344898727272, 7.008452313583359, 7.273325408411292, 7.767487954084508, 8.400699554890086, 8.723109302005076, 9.389053408744377, 9.728650659266431, 10.08847185746190, 10.64491898066612, 11.03329734065813, 11.72249939886857, 11.90161002911340, 12.42746443658625, 12.96705886717096

Graph of the $Z$-function along the critical line