Properties

Label 2-286650-1.1-c1-0-113
Degree $2$
Conductor $286650$
Sign $1$
Analytic cond. $2288.91$
Root an. cond. $47.8425$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 8-s + 11-s + 13-s + 16-s − 3·17-s + 7·19-s − 22-s + 4·23-s − 26-s − 2·29-s − 3·31-s − 32-s + 3·34-s + 2·37-s − 7·38-s + 6·41-s + 6·43-s + 44-s − 4·46-s + 4·47-s + 52-s − 2·53-s + 2·58-s + 4·59-s − 61-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.353·8-s + 0.301·11-s + 0.277·13-s + 1/4·16-s − 0.727·17-s + 1.60·19-s − 0.213·22-s + 0.834·23-s − 0.196·26-s − 0.371·29-s − 0.538·31-s − 0.176·32-s + 0.514·34-s + 0.328·37-s − 1.13·38-s + 0.937·41-s + 0.914·43-s + 0.150·44-s − 0.589·46-s + 0.583·47-s + 0.138·52-s − 0.274·53-s + 0.262·58-s + 0.520·59-s − 0.128·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 286650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 286650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(286650\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(2288.91\)
Root analytic conductor: \(47.8425\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 286650,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.056178784\)
\(L(\frac12)\) \(\approx\) \(2.056178784\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 \)
13 \( 1 - T \)
good11 \( 1 - T + p T^{2} \) 1.11.ab
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - 7 T + p T^{2} \) 1.19.ah
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 3 T + p T^{2} \) 1.31.d
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 + 11 T + p T^{2} \) 1.67.l
71 \( 1 - T + p T^{2} \) 1.71.ab
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 7 T + p T^{2} \) 1.83.ah
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.75561510631051, −12.18068799602130, −11.60221892066144, −11.35871151830996, −10.93920016967189, −10.36999130961227, −9.994007135280862, −9.297020135192769, −9.054822124852549, −8.829812954445586, −8.015426090812834, −7.512716343128617, −7.319809979607634, −6.745188100360315, −6.082566171714595, −5.801735504638409, −5.138574659140320, −4.620716725611845, −3.966154962758666, −3.438688686295564, −2.850352552324271, −2.358188240315104, −1.601560454187838, −1.069874046951209, −0.4865137407088737, 0.4865137407088737, 1.069874046951209, 1.601560454187838, 2.358188240315104, 2.850352552324271, 3.438688686295564, 3.966154962758666, 4.620716725611845, 5.138574659140320, 5.801735504638409, 6.082566171714595, 6.745188100360315, 7.319809979607634, 7.512716343128617, 8.015426090812834, 8.829812954445586, 9.054822124852549, 9.297020135192769, 9.994007135280862, 10.36999130961227, 10.93920016967189, 11.35871151830996, 11.60221892066144, 12.18068799602130, 12.75561510631051

Graph of the $Z$-function along the critical line