Properties

Label 2-283140-1.1-c1-0-26
Degree $2$
Conductor $283140$
Sign $-1$
Analytic cond. $2260.88$
Root an. cond. $47.5487$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 2·7-s − 13-s − 2·17-s + 8·19-s − 8·23-s + 25-s − 4·31-s − 2·35-s + 2·37-s + 4·41-s − 2·43-s − 3·49-s − 6·53-s − 4·59-s + 4·61-s + 65-s + 4·67-s − 8·71-s − 2·73-s + 8·79-s − 14·83-s + 2·85-s + 10·89-s − 2·91-s − 8·95-s + 18·97-s + ⋯
L(s)  = 1  − 0.447·5-s + 0.755·7-s − 0.277·13-s − 0.485·17-s + 1.83·19-s − 1.66·23-s + 1/5·25-s − 0.718·31-s − 0.338·35-s + 0.328·37-s + 0.624·41-s − 0.304·43-s − 3/7·49-s − 0.824·53-s − 0.520·59-s + 0.512·61-s + 0.124·65-s + 0.488·67-s − 0.949·71-s − 0.234·73-s + 0.900·79-s − 1.53·83-s + 0.216·85-s + 1.05·89-s − 0.209·91-s − 0.820·95-s + 1.82·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 283140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 283140 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(283140\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(2260.88\)
Root analytic conductor: \(47.5487\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 283140,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
11 \( 1 \)
13 \( 1 + T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 18 T + p T^{2} \) 1.97.as
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.85546172538257, −12.51596667639370, −11.84672220311053, −11.64029701563295, −11.31155380851590, −10.70026676374289, −10.23773405326371, −9.721768232635935, −9.280102437878517, −8.859114854190901, −8.120724363276401, −7.831444885303089, −7.568429964383784, −6.926603553426551, −6.412571263808626, −5.769608729423242, −5.357972798048876, −4.841611122734662, −4.318390932371862, −3.854816090814228, −3.241485581240695, −2.716093667613140, −1.956500066186182, −1.533481880620136, −0.7543474445674610, 0, 0.7543474445674610, 1.533481880620136, 1.956500066186182, 2.716093667613140, 3.241485581240695, 3.854816090814228, 4.318390932371862, 4.841611122734662, 5.357972798048876, 5.769608729423242, 6.412571263808626, 6.926603553426551, 7.568429964383784, 7.831444885303089, 8.120724363276401, 8.859114854190901, 9.280102437878517, 9.721768232635935, 10.23773405326371, 10.70026676374289, 11.31155380851590, 11.64029701563295, 11.84672220311053, 12.51596667639370, 12.85546172538257

Graph of the $Z$-function along the critical line