Properties

Label 2-281775-1.1-c1-0-41
Degree $2$
Conductor $281775$
Sign $-1$
Analytic cond. $2249.98$
Root an. cond. $47.4340$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s − 4-s + 6-s − 3·8-s + 9-s − 12-s + 13-s − 16-s + 18-s − 6·19-s + 4·23-s − 3·24-s + 26-s + 27-s + 2·29-s − 8·31-s + 5·32-s − 36-s + 4·37-s − 6·38-s + 39-s − 6·41-s + 6·43-s + 4·46-s − 8·47-s − 48-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s − 1/2·4-s + 0.408·6-s − 1.06·8-s + 1/3·9-s − 0.288·12-s + 0.277·13-s − 1/4·16-s + 0.235·18-s − 1.37·19-s + 0.834·23-s − 0.612·24-s + 0.196·26-s + 0.192·27-s + 0.371·29-s − 1.43·31-s + 0.883·32-s − 1/6·36-s + 0.657·37-s − 0.973·38-s + 0.160·39-s − 0.937·41-s + 0.914·43-s + 0.589·46-s − 1.16·47-s − 0.144·48-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 281775 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 281775 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(281775\)    =    \(3 \cdot 5^{2} \cdot 13 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(2249.98\)
Root analytic conductor: \(47.4340\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 281775,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 - T \)
5 \( 1 \)
13 \( 1 - T \)
17 \( 1 \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + p T^{2} \) 1.11.a
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 12 T + p T^{2} \) 1.61.m
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 16 T + p T^{2} \) 1.97.aq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.96139176778118, −12.76151928686641, −12.23460256003825, −11.74908768811403, −11.04008559442754, −10.81336891339766, −10.22205726047459, −9.554939818131871, −9.286848693569349, −8.822438747527718, −8.373259058674022, −7.969754468217054, −7.370833729598948, −6.773547028932044, −6.236646361943234, −5.960172545257792, −5.161996764839468, −4.746004738454106, −4.425732120737948, −3.643714935301152, −3.449033420990576, −2.837068863541672, −2.165631089787945, −1.622657406639731, −0.7494066384434539, 0, 0.7494066384434539, 1.622657406639731, 2.165631089787945, 2.837068863541672, 3.449033420990576, 3.643714935301152, 4.425732120737948, 4.746004738454106, 5.161996764839468, 5.960172545257792, 6.236646361943234, 6.773547028932044, 7.370833729598948, 7.969754468217054, 8.373259058674022, 8.822438747527718, 9.286848693569349, 9.554939818131871, 10.22205726047459, 10.81336891339766, 11.04008559442754, 11.74908768811403, 12.23460256003825, 12.76151928686641, 12.96139176778118

Graph of the $Z$-function along the critical line