Properties

Label 2-280e2-1.1-c1-0-135
Degree $2$
Conductor $78400$
Sign $1$
Analytic cond. $626.027$
Root an. cond. $25.0205$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 9-s + 2·13-s + 3·17-s + 8·19-s − 9·23-s − 4·27-s + 6·29-s − 5·31-s + 8·37-s + 4·39-s − 3·41-s + 10·43-s − 3·47-s + 6·51-s + 6·53-s + 16·57-s + 12·59-s + 4·61-s − 2·67-s − 18·69-s + 9·71-s + 10·73-s − 5·79-s − 11·81-s + 6·83-s + 12·87-s + ⋯
L(s)  = 1  + 1.15·3-s + 1/3·9-s + 0.554·13-s + 0.727·17-s + 1.83·19-s − 1.87·23-s − 0.769·27-s + 1.11·29-s − 0.898·31-s + 1.31·37-s + 0.640·39-s − 0.468·41-s + 1.52·43-s − 0.437·47-s + 0.840·51-s + 0.824·53-s + 2.11·57-s + 1.56·59-s + 0.512·61-s − 0.244·67-s − 2.16·69-s + 1.06·71-s + 1.17·73-s − 0.562·79-s − 1.22·81-s + 0.658·83-s + 1.28·87-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 78400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 78400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(78400\)    =    \(2^{6} \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(626.027\)
Root analytic conductor: \(25.0205\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 78400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.602484806\)
\(L(\frac12)\) \(\approx\) \(4.602484806\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 + 9 T + p T^{2} \) 1.23.j
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 9 T + p T^{2} \) 1.71.aj
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 5 T + p T^{2} \) 1.79.f
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 + 5 T + p T^{2} \) 1.97.f
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.08782023688230, −13.66394621764116, −13.20664523943302, −12.57514110868121, −11.98704227604594, −11.63293830092663, −11.08123532437031, −10.31482407691530, −9.878987456368986, −9.462939434123142, −9.014618536707159, −8.261458703251471, −8.034148664324415, −7.570014450444794, −6.983584640981220, −6.222095763732707, −5.657318317795060, −5.266595664534405, −4.337359540653412, −3.709500437286925, −3.455974871884213, −2.634314563099769, −2.235929087698000, −1.343037567258514, −0.6819396798182991, 0.6819396798182991, 1.343037567258514, 2.235929087698000, 2.634314563099769, 3.455974871884213, 3.709500437286925, 4.337359540653412, 5.266595664534405, 5.657318317795060, 6.222095763732707, 6.983584640981220, 7.570014450444794, 8.034148664324415, 8.261458703251471, 9.014618536707159, 9.462939434123142, 9.878987456368986, 10.31482407691530, 11.08123532437031, 11.63293830092663, 11.98704227604594, 12.57514110868121, 13.20664523943302, 13.66394621764116, 14.08782023688230

Graph of the $Z$-function along the critical line