Properties

Label 2-273e2-1.1-c1-0-13
Degree $2$
Conductor $74529$
Sign $1$
Analytic cond. $595.117$
Root an. cond. $24.3950$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s + 3·8-s − 16-s + 2·17-s − 4·19-s − 6·23-s − 5·25-s + 4·29-s − 5·32-s − 2·34-s + 10·37-s + 4·38-s − 12·41-s − 4·43-s + 6·46-s + 10·47-s + 5·50-s + 12·53-s − 4·58-s + 14·59-s + 10·61-s + 7·64-s − 2·68-s + 8·71-s + 2·73-s − 10·74-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s + 1.06·8-s − 1/4·16-s + 0.485·17-s − 0.917·19-s − 1.25·23-s − 25-s + 0.742·29-s − 0.883·32-s − 0.342·34-s + 1.64·37-s + 0.648·38-s − 1.87·41-s − 0.609·43-s + 0.884·46-s + 1.45·47-s + 0.707·50-s + 1.64·53-s − 0.525·58-s + 1.82·59-s + 1.28·61-s + 7/8·64-s − 0.242·68-s + 0.949·71-s + 0.234·73-s − 1.16·74-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 74529 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 74529 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(74529\)    =    \(3^{2} \cdot 7^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(595.117\)
Root analytic conductor: \(24.3950\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 74529,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.047550205\)
\(L(\frac12)\) \(\approx\) \(1.047550205\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
7 \( 1 \)
13 \( 1 \)
good2 \( 1 + T + p T^{2} \) 1.2.b
5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.90073178601218, −13.63368332163635, −13.19081374915504, −12.54681929086003, −12.04792933268320, −11.55819883797270, −10.98683149448379, −10.18085358318591, −10.11806290203971, −9.658893966615106, −8.909095931188454, −8.440284896623465, −8.113059198344208, −7.606276422784615, −6.904480108688056, −6.418737799572568, −5.617230378937600, −5.292918875495633, −4.420766748327747, −4.015237770216656, −3.538962480478400, −2.419716331989901, −2.030326816057131, −1.094918024577278, −0.4385553328531176, 0.4385553328531176, 1.094918024577278, 2.030326816057131, 2.419716331989901, 3.538962480478400, 4.015237770216656, 4.420766748327747, 5.292918875495633, 5.617230378937600, 6.418737799572568, 6.904480108688056, 7.606276422784615, 8.113059198344208, 8.440284896623465, 8.909095931188454, 9.658893966615106, 10.11806290203971, 10.18085358318591, 10.98683149448379, 11.55819883797270, 12.04792933268320, 12.54681929086003, 13.19081374915504, 13.63368332163635, 13.90073178601218

Graph of the $Z$-function along the critical line