Properties

Label 2-2664-1.1-c1-0-35
Degree $2$
Conductor $2664$
Sign $-1$
Analytic cond. $21.2721$
Root an. cond. $4.61217$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·13-s + 4·17-s + 4·19-s − 6·23-s − 5·25-s + 8·29-s − 4·31-s + 37-s − 10·41-s − 8·43-s + 8·47-s − 7·49-s + 6·53-s − 2·59-s − 10·61-s − 12·67-s + 8·71-s − 10·73-s + 8·79-s − 8·83-s − 16·89-s + 6·97-s − 6·101-s + 16·103-s + 12·107-s − 14·109-s + ⋯
L(s)  = 1  − 1.66·13-s + 0.970·17-s + 0.917·19-s − 1.25·23-s − 25-s + 1.48·29-s − 0.718·31-s + 0.164·37-s − 1.56·41-s − 1.21·43-s + 1.16·47-s − 49-s + 0.824·53-s − 0.260·59-s − 1.28·61-s − 1.46·67-s + 0.949·71-s − 1.17·73-s + 0.900·79-s − 0.878·83-s − 1.69·89-s + 0.609·97-s − 0.597·101-s + 1.57·103-s + 1.16·107-s − 1.34·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2664\)    =    \(2^{3} \cdot 3^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(21.2721\)
Root analytic conductor: \(4.61217\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2664,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
37 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 + 4 T + p T^{2} \) 1.31.e
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 2 T + p T^{2} \) 1.59.c
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 + 16 T + p T^{2} \) 1.89.q
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.349778374652070522944483171008, −7.67419897828900331555845121123, −7.11580588360178380531607038280, −6.10393084738709341744128035876, −5.31488880682773694348775332571, −4.61597339575994533252765120951, −3.55300849819846767635896768081, −2.66952151423569177966024936577, −1.57898852442273499679951831437, 0, 1.57898852442273499679951831437, 2.66952151423569177966024936577, 3.55300849819846767635896768081, 4.61597339575994533252765120951, 5.31488880682773694348775332571, 6.10393084738709341744128035876, 7.11580588360178380531607038280, 7.67419897828900331555845121123, 8.349778374652070522944483171008

Graph of the $Z$-function along the critical line