Properties

Label 2-25410-1.1-c1-0-3
Degree $2$
Conductor $25410$
Sign $1$
Analytic cond. $202.899$
Root an. cond. $14.2442$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s − 5-s + 6-s − 7-s − 8-s + 9-s + 10-s − 12-s − 3·13-s + 14-s + 15-s + 16-s + 2·17-s − 18-s − 20-s + 21-s + 9·23-s + 24-s + 25-s + 3·26-s − 27-s − 28-s − 9·29-s − 30-s + 7·31-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s − 0.377·7-s − 0.353·8-s + 1/3·9-s + 0.316·10-s − 0.288·12-s − 0.832·13-s + 0.267·14-s + 0.258·15-s + 1/4·16-s + 0.485·17-s − 0.235·18-s − 0.223·20-s + 0.218·21-s + 1.87·23-s + 0.204·24-s + 1/5·25-s + 0.588·26-s − 0.192·27-s − 0.188·28-s − 1.67·29-s − 0.182·30-s + 1.25·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 25410 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 25410 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(25410\)    =    \(2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(202.899\)
Root analytic conductor: \(14.2442\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 25410,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7496011198\)
\(L(\frac12)\) \(\approx\) \(0.7496011198\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 + T \)
7 \( 1 + T \)
11 \( 1 \)
good13 \( 1 + 3 T + p T^{2} \) 1.13.d
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 9 T + p T^{2} \) 1.23.aj
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 + 11 T + p T^{2} \) 1.43.l
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 + 7 T + p T^{2} \) 1.67.h
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.24472707084009, −15.01118290768231, −14.62747544419668, −13.39555338710184, −13.30644964866475, −12.46854813957646, −11.97463749470042, −11.59395639024034, −10.93960114121447, −10.49676673483847, −9.805974131435104, −9.452373558859883, −8.784769153629867, −8.116252647622772, −7.503511456116365, −7.024895898684522, −6.538010642456171, −5.783478470497777, −5.077429566228741, −4.619525328982019, −3.571943445399972, −3.076138875804086, −2.194386209329162, −1.245330229310216, −0.4337625663988397, 0.4337625663988397, 1.245330229310216, 2.194386209329162, 3.076138875804086, 3.571943445399972, 4.619525328982019, 5.077429566228741, 5.783478470497777, 6.538010642456171, 7.024895898684522, 7.503511456116365, 8.116252647622772, 8.784769153629867, 9.452373558859883, 9.805974131435104, 10.49676673483847, 10.93960114121447, 11.59395639024034, 11.97463749470042, 12.46854813957646, 13.30644964866475, 13.39555338710184, 14.62747544419668, 15.01118290768231, 15.24472707084009

Graph of the $Z$-function along the critical line